Yusheng Zheng, Tong Yu, Yiwei Yang, Yanpeng Hu, XiaoZheng Lai, Dan Williams, Andrew Quin

Intro & Background

Motivation for Extension Frameworks

* Many modern applications (e.g., web servers, databases, browsers) support plugin-style extensions for:
o Performance optimization (e.g., custom query optimizers [1, 38])
o New functionality (e.g., domain-specific logic [46, 48])
o Security hardening (e.g., dynamic taint analysis [44, 59])
o Observability and debugging (e.g., performance tracing, failure analysis [37, 43, 58, 74])
¢ Atypical extension model provides:

1. Extension Entrypoints—predetermined “hooks” in the host application where the extension can
run.

N

. Runtime Loading—when a thread reaches a hook, execution jumps into the extension and returns
afterwards.

Key Challenges
1. Interconnectedness vs. Safety

o Extensions need access to application state (interconnectedness), but that must be limited to avoid
buggy or malicious behavior that could crash or compromise the app (safety).

o Existing frameworks rarely give fine-grained control over exactly which parts of the application an
extension may read or write.

2. Isolation vs. Efficiency

o Process- or container-level isolation is heavy: frequent context switches impose large performance
penalties.

o Software fault isolation (SFI) can be lighter weight but still incurs significant overhead.
o The ideal is in-process, low-overhead isolation with minimal runtime cost.
Shortcomings of Existing Approaches

* Native execution (e.g., LD_PRELOAD, dynamic binary rewriting) is fast but offers no real isolation or
safety.

.

Software Fault Isolation (SFI) (e.g., Native Client, WebAssembly, Lua, RLBox, XFl) enforces isolation but
either lacks fine-grained permission controls or still incurs nontrivial overhead.

* Subprocess or micro-VM (e.g., IwC, Shreds, Orbit, Wedge) can isolate, but often require application
modifications and incur high IPC/context-switch costs.

* eBPF uprobes isolate extensions reasonably well but cannot enforce per-hookpoint permissions in user
space, and each user-side hook requires a kernel trap, hurting performance.

Our Solution at a Glance

¢ Extension Interface Model (EIM): Abstract host functionality as resources and capabilities.

What extensions
should be allowed?

<2
Extension
Manger
Host Application sion Runtime
(==l Entry 1 ¢
User Entry 2 |¢ Program
wn'lesI Iwrites
Application Extension
Developer(s) Developer(s)

Use Cases

observability, and performance advantages.
1. Nginx Plugin (Web Server Security Extension)

o Goal: Deploy a firewall extension in Nginx's forward-proxy mode to block SQL-injection and XSS
attacks.

o Implementation:

= Atthe processBegin hook, define an Extension Class that only allows reading/writing the
current Request object (read(r), write(r)).

= The extension inspects the URL; if malicious, return a 404 immediately.

o Result: When the extension is loaded, bpftime adds only ~2% overhead—much lower than Lua,
WebAssembly, ERIM, or RLBox.

2. sslsniff (Distributed HTTPS Tracing)
o Goal: Observe encrypted TLS/SSL traffic end-to-end for distributed tracing/observability.

o Conventional eBPF Approach: Uprobes on OpenSSL's ssL_read/ SSL_write cause up to ~30%
throughput drop.

o bpftime Implementation:

= Automatically place hookpoints at each uprobe site.

Create an “Observability” Extension Class that permits reading pointers needed to record
metadata.

Write trace records into a shared bpftime Map only if constraints are met.
o Measured Results (Figure 8):

= eBPF uprobes: up to 28.06% throughput reduction.
= bpftime: up to 7.41% throughput reduction.

3. Syscount (Per-Process Syscall Counting)
o Goal: Count system calls only from a target process rather than all processes.

o Conventional Approach (bcc): Place kprobes on every process; filter in user space—incurs system-
wide overhead.

o bpftime Implementation:

= Hook only sysenter/sysexit for the target process using an “Observability” Extension Class. Configuration Throughput Notes
req/s;
o Measured Results (Figure 9): (req/s)
no AOF 87k (no durability)
Scenario Throughput (RPS) everysec 72k Might lose = 7.2x104 updates on crash
Native (no hooking) 19,705 alwayson 13k (fsync on every write)
Kernel uprobe (unfiltered) 17,676 (-10.24%) Batch 1 ~19k Loss < 1 update
bpftime for target process (filtered) 19,042 (-3.36%) Batch 3 =43k +1.7x vs. everysec, loss < 3 updates
Kernel uprobe (with user-side filter) 17,817 (-9.57%) Batch 12 ~ 48k +1.9x vs. everyse, loss < 12 updates
bpftime (unmonitored processes) ~19,800 (~ native) Batch 24 =50k +21x vs, everysec, loss 24 updates
Batch 48 =53k +2.3x vs. everysec, loss < 48 updates
Delayed-fsync 40 k < 2 updates lost; ~ 4.15x faster than alwayson
o bpftime introduces ~3.36% overhead to the monitored process and zero overhead to others; native
eBPF imposes ~10% everywhere. Delayed-fsync 65k <2 updétes lost; ~ 10% slower than everysec, but 5 orders
+ Fast-notify of magnitude fewer losses (2 vs. 7.2x10¢)
4. DeepFlow (Microservices Observability Platform)
o Goal: Provide end-to-end tracing across kernel and user space for Go-based microservices.
o Conventional eBPF Implementation: Uprobes on many Go runtime functions cause up to 50% drop g 3082 1 <ormel Uoron
ernel Uprobe
in throughput. bpfti
WebAssembly 4007 10000 Natve
o bpftime Implementation:
)) ’) S ERIN 4024 g 8000
= Modify ~10 lines of extension code to reuse automatic hook injection. RLB 4148 7
OX 2 6000
= Use an Observability Class to limit capabilities to safe reads of call stacks/IDs. bpftime 4461 3
& 4000
o Measured Results (Figure 6): Baseline C 4559
Native 4536 2000
Workload Native Throughput eBPF DeepFlow bpftime DeepFlow
0 1,000R 2,000 < 3,0(;0 aps 4,000 5,000 ' b e T TR IR
Small Replies 250 k RPS 115 k RPS (~54%) 170 k RPS (-32%) equests per Second (RPS) Data Size
fime-nginx-module ssl-nginx
Large Replies 47 k RPS 21 k RPS (-55%) 31 k RPS (-34%) DD g o
o bpftime delivers >1.5x throughput of eBPF DeepFlow in all cases. Stremp Match Log2 Prime Return Directly Memcpy Switch Strcmp Mismatch ~ Memory A + B
5. FUSE Caching (User-Space File System Cache) 500,000 4,000 1,250,000 120 40,000° 150,000
400,000° ' 1,000,000 0 300,000 ; SR &0
o Goal: Speed up FUSE-based user-space file systems (Passthrough, LoggedFS). = 3,000 o 80 200,000 SIMED 100,000 80
A . L . . 300000 2,000 720000 60 20,000 75,000 60
o Conventional FUSE: Each I/0 involves a user—kernelFS transition, incurring high latency.zo0.000- 500,000 W TBLEI)| o w0
. . 100,000- I 000 I 250,000 - 0 D e I 5
o bpftime Implementation: onAN o MM o-" WA o? I i | Py (3 | | A8 o-"MAR o® I
ubpf B rbpf bpftime ™ native

= Hook open, close, getdents, stat Syscalls to maintain an in-user-space cache (bpftime Map).

= Kernel kprobes watch unlink to keep cache coherent.

o Measured Latency (Table 2):

We implemented and evaluated six representative scenarios to demonstrate bpftime’s security, customizability,

o At development time, the application author declares which global variables or functions an
extension may access (€.g., read(pid) , write(r->headers), call get_time()).

o At deployment time, the extension manager chooses a minimal set of capabilities for each hook
(adhering to “least privilege”).

* bpftime Extension Runtime: A lightweight, in-process framework that:

o Uses a verifier similar to eBPF's to guarantee extension bytecode matches the declared EIM
constraints—zero runtime cost in user space.

°

Leverages Intel Memory Protection Keys (MPK) via an ERIM-style approach to enforce in-process
isolation without context switches.

o Applies binary rewriting to “conceal” hookpoints so that, if no extension is loaded, there is literally
no added cost at that hook.

°

Maintains compatibility with existing eBPF tools (bcc, libbpf, bpftrace) by intercepting and rewriting
eBPF loading and Map operations (bpftime Maps).

UserBPF Loader

Binary

uprobe

eBPF Program eBPF application UserBPF . [Gserspace
Source Code BPF bytecode user | < tracepoint

f JIT compiler runiime | 4 [Syscal
eBPF compiler]/ libbpf racepoin

Userspace

Kemel

yscal
\{_ Interposition

JIT compiler

eBPF
runtime

#(orobe)

#(socket

2.1 EIM Model

1. D

Time EIM Sp ion

o State Capabilities

= Written as read(var) Or write(var) to specify allowed global variables or struct-field
accesses.

= Example:

State_Capability(
name = "readpid”,
operation =

)i

read(ngx_pid)

o Function Capabilities

= Specify which host functions an extension may call, including their prototypes and optional
pre/post-conditions.

= Example:

Function_Capability(

name = "nginxTime",
prototype = (void) -> time_t,
constraints = { return value > 0 }
)i
Native FUSE Latenc bpftime Cache Latenc
Scenario Y P Y Speedup
(ms) (ms)
Passthrough,
4 3.65 0.176 ~20.8x
fstat
LoggedFS, fstat 7.40 0.184 =~ 40.2%
LoggedFS, openat 17.0 0.074 = 229.7x
Passthrough, find 5.1 1.6 ~3.19%

6. Redis Durability Tuning (Custom Persistence Strategies)

o Background: Redis default persistence policies:
1. no AOF: No durability—crashes lose all data.
2. everysec: fsync every second—can lose =~ 10 updates on crash.
3. alwayson: fsync on every write—~ 6x performance penalty.

o Goal: Provide user-space extensions that batch 1/0 and delay fsyncs for a better performance-
durability tradeoff.

o Implementation Steps:
1. Add three new functions in Redis (for batching writes and deferred fsync).
2. Annotate relevant write/fsync callsites with bpftime hooks.
3. Define three Extension Classes:
= Batch 1/0: Buffer up to b writes before invoking £sync, losing at most b updates on crash.

= Delayed-fsync: Only invoke fsync if a previous fsync is still in flight—losing at most 2
updates.

= Fast-notify Optimization: Use a shared counter between user and kernel to skip
redundant syscalls when no new fsync is required.

o Measured Performance (Figure 7):

Jit_execution_times

®)DI*

n

Implementation

o Extension Entry Declarations

= Annotate the host functions that become hookpoints for extensions, including name and
signature.

= Example:

Extension_Entry(
name = "processBegin",
extension_hook = "ngx_http_ process_request",
prototype =
)i
Extension_Entry(

(Request *r) -> int

name = "updateResponseContent",

extension_hook = "ngx_http_content_phase",
prototype =

)i

(Request *r) -> int*

o These annotations are extracted at compile time to build the development-time EIM specification.

2. Deploy 1t-Time EIM C ation

o For each declared Extension Entry, an Extension Class specifies:
1. A capability set (subset of the declared state/function capabilities).
2. Optional resource limits (e.g., “instructions < ,” “memory < 8 MB").

o Example YAML for two Nginx hooks:

Extension_Class(
name = "observeProcessBegin",
extension_hook = "processBegin",
allowed_caps =
)

Extension_Class(

{ instructions < inf, nginxTime, readPid, read(r) }

name = "updateResponse",

extension_hook = "updateResponseContent",

allowed_caps = { instructions < inf, read(r), write(r) }

o An extension manager (person or script) writes this deployment-time policy to enforce “least
privilege” at runtime.

2.2 bpftime Loader

1. eBPF Syscall Interception

o bpftime intercepts standard eBPF loading syscalls (bp£ () , map-related calls) in user space.
o Itimplements a user-space shim that translates those requests into calls to the real kernel eBPF API
via UNIX-domain sockets or file descriptors.

o This maintains full compatibility with bcc, libbpf, bpftrace, etc., requiring no kernel code changes.

2. Verifier

o

Accepts raw eBPF bytecode and the selected Extension Class's capability constraints.

o

Translates each declared capability (e.g., “can call get_time,” “can read pointer r->headers”) into a set
of clauses or predicates that the eBPF verifier understands.

o

Ensures the loaded bytecode obeys these constraints—no out-of-bounds pointer use, no disallowed
calls—purely at load time, so there is zero runtime-execution overhead.

3. Binary Rewriter

o Uses ptrace to pause the target process and injects the bpftime runtime library into its address
space.

o Relies on Frida + Capstone to rewrite machine instructions at each declared hookpoint:

1. Atevery uprobe/uretprobe hook, replace the original instruction(s) with a jump (trampoline)
into the extension’s entry stub, then execute the original instructions upon return from the
extension.

2. For arbitrary syscall hooks (e.g., sysenter), use a “z-poline” instrumentation technique to insert
jumps with minimal instruction-overhead.

o Concealed Hookpoints: If no extension is currently loaded for a given hook, the code at that
hookpoint remains exactly as before—no added branches or jumps—so the cost is literally zero when
unused.

2.3 bpftime Runtime

1. In-Process Isolation via MPK

o Follows an ERIM-style approach using Intel Memory Protection Keys (MPK):

. Each extension is assigned a distinct MPK indices; extension code/data pages are tagged with
that key.

N

. On entry into the extension, wrekru flips the PKRU so that pages tagged for that extension
become writable/exec-readable.

w

. On exit, wrPkrU flips PKRU back so that extension pages become non-writable at user level.

IS

. The host application cannot tamper with extension code or data, ensuring strong isolation, all
without expensive context switches or syscalls.

o Fully implemented on x86-64; ARM support can be added via similar ARM PK mechanisms (AMPK).
2. bpftime Maps (Efficient Data Structures)

o Unlike native eBPF Maps (which require syscalls), bpftime Maps operate entirely in user space,
providing zero-syscall access:

= Local (Non-shared) Mode: Single-process, per-extension local hash tables.
= Inter-process Shared Mode: Shared memory segments for multiple processes to share state.

= Kernel-Backed Mode: Hybrid mode where the map is kernel-visible for use by both kernel
probes and user-space extensions.

o

Supported data structures: Hash Map, Array, LPM Trie, Ring Buffer, Perf Event Array, per-CPU
variants, etc.

)

Internally optimized with lock-free or per-CPU data structures so that typical operations (lookup,
update, delete) are an order of magnitude faster than native eBPF Maps.

Citation

Anjo Vahldiek-Oberwagner, Eslam Elnikety, Nuno O. Duarte, Michael Sammler, Peter Druschel, and Deepak
Garg.

“ERIM:Secure, Efficient In-Process Isolation with Protection Keys (MPK).”

In Proceedings of the 28th USENIXSecurity Symposium (USENIXSecurity '19), pp. 1221-1238, 2019.

Yuzhuo Jingand Peng Huang.

“Operating System Support for Safe and Efficient Auxiliary Execution (Orbit).”
In Proceedings of the 16th USENIXSymposium on Operating Systems Design and Implementation (OSDI'22),
2022.

Affiliation & Supports

@/) eunomia
| 74

