
Tested on eight microbenchmarks ( strcmp match , log2 , prime , return directly , memcpy , 
switch , strcmp mismatch , memory a + b ).

On average, bpftime is 1.53× faster than ubpf and 1.72× faster than rbpf.

3. Extension Load Latency

Instrument malloc  hook and measure dynamic loading overhead:

bpftime: ~ 48 ms to load the extension.

LD_PRELOAD: ~ 30 ms.

4. Cost Breakdown of a Hookpoint

Direct empty function call: 106 ns

Through bpftime trampoline: 190 ns

Hidden hookpoint (no extension loaded): saves ~ 106 ns per call.

MPK Enable/Disable: No significant impact on average latency.
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Unlike native eBPF Maps (which require syscalls), bpftime Maps operate entirely in user space, 
providing zero-syscall access:

Local (Non-shared) Mode: Single-process, per-extension local hash tables.

Inter-process Shared Mode: Shared memory segments for multiple processes to share state.

Kernel-Backed Mode: Hybrid mode where the map is kernel-visible for use by both kernel 
probes and user-space extensions.

Supported data structures: Hash Map, Array, LPM Trie, Ring Buffer, Perf Event Array, per-CPU 
variants, etc.

Internally optimized with lock-free or per-CPU data structures so that typical operations (lookup, 
update, delete) are an order of magnitude faster than native eBPF Maps.

3. Use Cases  
We implemented and evaluated six representative scenarios to demonstrate bpftime’s security, customizability, 
observability, and performance advantages.

1. Nginx Plugin (Web Server Security Extension)

Goal: Deploy a firewall extension in Nginx’s forward-proxy mode to block SQL-injection and XSS 
attacks.

Implementation:

At the processBegin  hook, define an Extension Class that only allows reading/writing the 
current Request  object ( read(r) , write(r) ).

The extension inspects the URL; if malicious, return a 404 immediately.

Result: When the extension is loaded, bpftime adds only ~2% overhead—much lower than Lua, 
WebAssembly, ERIM, or RLBox.

2. sslsniff (Distributed HTTPS Tracing)

Goal: Observe encrypted TLS/SSL traffic end-to-end for distributed tracing/observability.

Conventional eBPF Approach: Uprobes on OpenSSL’s SSL_read / SSL_write  cause up to ~30% 
throughput drop.

bpftime Implementation:

Automatically place hookpoints at each uprobe site.

Create an “Observability” Extension Class that permits reading pointers needed to record 
metadata.

Write trace records into a shared bpftime Map only if constraints are met.

Measured Results (Figure 8):

eBPF uprobes: up to 28.06% throughput reduction.
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Unlike native eBPF Maps (which require syscalls), bpftime Maps operate entirely in user space, 
providing zero-syscall access:

Local (Non-shared) Mode: Single-process, per-extension local hash tables.

Inter-process Shared Mode: Shared memory segments for multiple processes to share state.

Kernel-Backed Mode: Hybrid mode where the map is kernel-visible for use by both kernel 
probes and user-space extensions.

Supported data structures: Hash Map, Array, LPM Trie, Ring Buffer, Perf Event Array, per-CPU 
variants, etc.

Internally optimized with lock-free or per-CPU data structures so that typical operations (lookup, 
update, delete) are an order of magnitude faster than native eBPF Maps.

3. Use Cases  
We implemented and evaluated six representative scenarios to demonstrate bpftime’s security, customizability, 
observability, and performance advantages.

1. Nginx Plugin (Web Server Security Extension)

Goal: Deploy a firewall extension in Nginx’s forward-proxy mode to block SQL-injection and XSS 
attacks.

Implementation:

At the processBegin  hook, define an Extension Class that only allows reading/writing the 
current Request  object ( read(r) , write(r) ).

The extension inspects the URL; if malicious, return a 404 immediately.

Result: When the extension is loaded, bpftime adds only ~2% overhead—much lower than Lua, 
WebAssembly, ERIM, or RLBox.

2. sslsniff (Distributed HTTPS Tracing)

Goal: Observe encrypted TLS/SSL traffic end-to-end for distributed tracing/observability.

Conventional eBPF Approach: Uprobes on OpenSSL’s SSL_read / SSL_write  cause up to ~30% 
throughput drop.

bpftime Implementation:

Automatically place hookpoints at each uprobe site.

Create an “Observability” Extension Class that permits reading pointers needed to record 
metadata.

Write trace records into a shared bpftime Map only if constraints are met.

Measured Results (Figure 8):

eBPF uprobes: up to 28.06% throughput reduction.
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Motivation for Extension Frameworks

Many modern applications (e.g., web servers, databases, browsers) support plugin-style extensions for:

Performance optimization (e.g., custom query optimizers [1, 38])

New functionality (e.g., domain-specific logic [46, 48])

Security hardening (e.g., dynamic taint analysis [44, 59])

Observability and debugging (e.g., performance tracing, failure analysis [37, 43, 58, 74])

A typical extension model provides:

1. Extension Entrypoints—predetermined “hooks” in the host application where the extension can 
run.

2. Runtime Loading—when a thread reaches a hook, execution jumps into the extension and returns 
afterwards.

Key Challenges

1. Interconnectedness vs. Safety

Extensions need access to application state (interconnectedness), but that must be limited to avoid 
buggy or malicious behavior that could crash or compromise the app (safety).

Existing frameworks rarely give fine-grained control over exactly which parts of the application an 
extension may read or write.

2. Isolation vs. Efficiency

Process- or container-level isolation is heavy: frequent context switches impose large performance 
penalties.

Software fault isolation (SFI) can be lighter weight but still incurs significant overhead.

The ideal is in-process, low-overhead isolation with minimal runtime cost.

Shortcomings of Existing Approaches

Native execution (e.g., LD_PRELOAD, dynamic binary rewriting) is fast but offers no real isolation or 
safety.

Software Fault Isolation (SFI) (e.g., Native Client, WebAssembly, Lua, RLBox, XFI) enforces isolation but 
either lacks fine-grained permission controls or still incurs nontrivial overhead.

Subprocess or micro-VM (e.g., lwC, Shreds, Orbit, Wedge) can isolate, but often require application 
modifications and incur high IPC/context-switch costs.

eBPF uprobes isolate extensions reasonably well but cannot enforce per-hookpoint permissions in user 
space, and each user-side hook requires a kernel trap, hurting performance.

Our Solution at a Glance

Extension Interface Model (EIM): Abstract host functionality as resources and capabilities.

Host Application
Entry 1

Entry 2

Extension Runtime
ext1

ext2

Extension
ProgramUser

Application
Developer(s)

Extension
Developer(s)

Extension
Manger

uses

writes writes

What extensions
should be allowed?

Figure 1: A process extended with two extensions, ext1 and
ext2, with associated extension entries, entry1 and entry2,
respectively. The application developer(s) and extension de-
veloper(s) write the host application and extension program,
respectively. The User uses the host application. The Exten-
sion Manager decides which extensions to allow and use in
the deployment.

In the rest of the paper, we motivate EIM and bpftime (§2),
describe EIM (§3), explain the design and implementation of
bpftime (§4), discuss 6 use-cases (§5), evaluate bpftime(§6),
describe related work (§7), and conclude (§8).

2 Motivation

System extensions augment an application without modifying
its source code to customize behavior, enhance security, add
custom features, and observe behavior. By supporting appli-
cation modifications without requiring source code changes,
extensions allow a customized deployment to easily integrate
maintenance updates from upstream repositories and can pro-
vide assurances of security and safety. The rest of this section
discusses the principal roles and threat model of system exten-
sions (2.1), provides an example web-server use-case (2.2),
articulates the key properties of extension frameworks (2.3),
and discusses limitations of current state-of-the-art (2.4).

2.1 Roles and Threat Model
The system extension usage model considers four key princi-
pals: the application developers, a group of trusted developers
who write the original application; the extension developers,
a group of trusted by fallible developers who create the exten-
sions; the extension manager, a trusted individual that installs
and manages the extensions; and users, untrusted individuals
that interact with the extended application.

Figure 1 provides a representation of an extended appli-
cation and shows the role of each principal. The application

Bug Software Summary
Bilibili [70] Nginx Livelock (infinite loop) in an ex-

tension caused production out-
age.

CVE-2021-44790 [45] Apache Buffer overflow in httpd’s lua
module causes application to
crash.

CVE-2024-31449 [40] Redis Stack overflow in Lua script
leads to arbitrary remote code
execution.

Table 1: Example issues caused by extension safety violations.

developers write the host application. The extension devel-
oper creates the extension program, which can read and write
application state and execute application-defined functions.
The extension manager is responsible for creating rules for the
extension entries that govern the allowed extensions. Finally,
users produce input that interacts with the host application
and, indirectly, the extension program.

The system extension threat model assumes that both the ap-
plication developer(s) and extension developer(s) are trusted
but fallible. This means that applications and extensions might
be exploitable, but intentionally malicious applications or ex-
tensions are out of scope. The threat model considers users
untrusted: they may supply crafted inputs to trigger vulner-
abilities in otherwise benign code. Finally, the threat model
considers the extension manager as trusted. I.e., the model
assumes that the extension manager correctly identifies rules
that prevent the user from exploiting the deployment.

2.2 Web-Server Example
Consider an instance of nginx deployed as a reverse proxy.
The application developers write the server, while the ex-
tension developers provide a suite of possible extensions to
deploy on the system for monitoring, firewalls, and load bal-
ancing. The extension manager determines the extensions for
the deployment and the privileges to provide each extension.
First, the manager uses an extension program that monitors
traffic to detect reliability issues [25]. Second, the manager
deploys an extension program that implements a firewall that
returns a 404 response for URLs that are indicative of SQL
injection and cross-site scripting attack. Finally, the man-
ager deploys an extension program to perform load balancing
across the possible servers downstream from the proxy by pe-
riodically contacting downstream servers to measure system
load [24].

2.3 Key Extension Framework Features
Extension use-cases require three key features:

Fine-grained Safety/Interconnectedness tradeoffs. Ex-
tensions must be interconnected, i.e., able to interact with the
host application. Host interactions include reading/writing
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At development time, the application author declares which global variables or functions an 
extension may access (e.g., read(pid) , write(r->headers) , call get_time() ).

At deployment time, the extension manager chooses a minimal set of capabilities for each hook 
(adhering to “least privilege”).

bpftime Extension Runtime: A lightweight, in-process framework that:

Uses a verifier similar to eBPF’s to guarantee extension bytecode matches the declared EIM 
constraints—zero runtime cost in user space.

Leverages Intel Memory Protection Keys (MPK) via an ERIM-style approach to enforce in-process 
isolation without context switches.

Applies binary rewriting to “conceal” hookpoints so that, if no extension is loaded, there is literally 
no added cost at that hook.

Maintains compatibility with existing eBPF tools (bcc, libbpf, bpftrace) by intercepting and rewriting 
eBPF loading and Map operations (bpftime Maps).

2. Implementation  

2.1 EIM Model  

1. Development-Time EIM Specification

State Capabilities

Written as read(var)  or write(var)  to specify allowed global variables or struct-field 
accesses.

Example:

Function Capabilities

Specify which host functions an extension may call, including their prototypes and optional 
pre/post-conditions.

Example:

State_Capability(
  name      = "readPid",
  operation = read(ngx_pid)
);

Function_Capability(
  name        = "nginxTime",
  prototype   = (void) -> time_t,
  constraints = { return_value > 0 }
);

Extension Entry Declarations

Annotate the host functions that become hookpoints for extensions, including name and 
signature.

Example:

These annotations are extracted at compile time to build the development-time EIM specification.

2. Deployment-Time EIM Configuration

For each declared Extension Entry, an Extension Class specifies:

1. A capability set (subset of the declared state/function capabilities).

2. Optional resource limits (e.g., “instructions < ∞,” “memory < 8 MB”).

Example YAML for two Nginx hooks:

An extension manager (person or script) writes this deployment-time policy to enforce “least 
privilege” at runtime.

2.2 bpftime Loader  

1. eBPF Syscall Interception

bpftime intercepts standard eBPF loading syscalls ( bpf() , map-related calls) in user space.

Extension_Entry(
  name           = "processBegin",
  extension_hook = "ngx_http_process_request",
  prototype      = (Request *r) -> int
);
Extension_Entry(
  name           = "updateResponseContent",
  extension_hook = "ngx_http_content_phase",
  prototype      = (Request *r) -> int*
);

Extension_Class(
  name            = "observeProcessBegin",
  extension_hook  = "processBegin",
  allowed_caps    = { instructions < inf, nginxTime, readPid, read(r) }
)
Extension_Class(
  name            = "updateResponse",
  extension_hook  = "updateResponseContent",
  allowed_caps    = { instructions < inf, read(r), write(r) }
)

bpftime: up to 7.41% throughput reduction.

3. Syscount (Per-Process Syscall Counting)

Goal: Count system calls only from a target process rather than all processes.

Conventional Approach (bcc): Place kprobes on every process; filter in user space—incurs system-
wide overhead.

bpftime Implementation:

Hook only sysenter / sysexit  for the target process using an “Observability” Extension Class.

Scenario Throughput (RPS)

Native (no hooking) 19,705

Kernel uprobe (unfiltered) 17,676 (−10.24%)

bpftime for target process (filtered) 19,042 (−3.36%)

Kernel uprobe (with user-side filter) 17,817 (−9.57%)

bpftime (unmonitored processes) ~19,800 (≈ native)

Measured Results (Figure 9):

 

bpftime introduces ~3.36% overhead to the monitored process and zero overhead to others; native 
eBPF imposes ~10% everywhere.

4. DeepFlow (Microservices Observability Platform)

Goal: Provide end-to-end tracing across kernel and user space for Go-based microservices.

Conventional eBPF Implementation: Uprobes on many Go runtime functions cause up to 50% drop 
in throughput.

bpftime Implementation:

Modify ~10 lines of extension code to reuse automatic hook injection.

Use an Observability Class to limit capabilities to safe reads of call stacks/IDs.

Workload Native Throughput eBPF DeepFlow bpftime DeepFlow

Small Replies 250 k RPS 115 k RPS (−54%) 170 k RPS (−32%)

Large Replies 47 k RPS 21 k RPS (−55%) 31 k RPS (−34%)

Measured Results (Figure 6):

 
bpftime delivers ≥1.5× throughput of eBPF DeepFlow in all cases.

5. FUSE Caching (User-Space File System Cache)

Goal: Speed up FUSE-based user-space file systems (Passthrough, LoggedFS).

Conventional FUSE: Each I/O involves a user↔kernel↔FS transition, incurring high latency.

bpftime Implementation:

Hook open , close , getdents , stat  syscalls to maintain an in-user-space cache (bpftime Map).

Kernel kprobes watch unlink  to keep cache coherent.

Scenario
Native FUSE Latency 
(ms)

bpftime Cache Latency 
(ms)

Speedup

Passthrough, 
fstat

3.65 0.176 ≈ 20.8×

LoggedFS, fstat 7.40 0.184 ≈ 40.2×

LoggedFS, openat 17.0 0.074 ≈ 229.7×

Passthrough, find 5.1 1.6 ≈ 3.19×

Measured Latency (Table 2):

 

6. Redis Durability Tuning (Custom Persistence Strategies)

Background: Redis default persistence policies:

1. no AOF: No durability—crashes lose all data.

2. everysec: fsync every second—can lose ≈ 10⁴ updates on crash.

3. alwayson: fsync on every write—≈ 6× performance penalty.

Goal: Provide user-space extensions that batch I/O and delay fsyncs for a better performance-
durability tradeoff.

Implementation Steps:

1. Add three new functions in Redis (for batching writes and deferred fsync).

2. Annotate relevant write/fsync callsites with bpftime hooks.

3. Define three Extension Classes:

Batch I/O: Buffer up to b writes before invoking fsync , losing at most b updates on crash.

Delayed-fsync: Only invoke fsync  if a previous fsync  is still in flight—losing at most 2 
updates.

bpftime delivers ≥1.5× throughput of eBPF DeepFlow in all cases.

5. FUSE Caching (User-Space File System Cache)

Goal: Speed up FUSE-based user-space file systems (Passthrough, LoggedFS).

Conventional FUSE: Each I/O involves a user↔kernel↔FS transition, incurring high latency.

bpftime Implementation:

Hook open , close , getdents , stat  syscalls to maintain an in-user-space cache (bpftime Map).

Kernel kprobes watch unlink  to keep cache coherent.

Scenario
Native FUSE Latency 
(ms)

bpftime Cache Latency 
(ms)

Speedup

Passthrough, 
fstat

3.65 0.176 ≈ 20.8×

LoggedFS, fstat 7.40 0.184 ≈ 40.2×

LoggedFS, openat 17.0 0.074 ≈ 229.7×

Passthrough, find 5.1 1.6 ≈ 3.19×

Measured Latency (Table 2):

 

6. Redis Durability Tuning (Custom Persistence Strategies)

Background: Redis default persistence policies:

1. no AOF: No durability—crashes lose all data.

2. everysec: fsync every second—can lose ≈ 10⁴ updates on crash.

3. alwayson: fsync on every write—≈ 6× performance penalty.

Goal: Provide user-space extensions that batch I/O and delay fsyncs for a better performance-
durability tradeoff.

Implementation Steps:

1. Add three new functions in Redis (for batching writes and deferred fsync).

2. Annotate relevant write/fsync callsites with bpftime hooks.

3. Define three Extension Classes:

Batch I/O: Buffer up to b writes before invoking fsync , losing at most b updates on crash.

Delayed-fsync: Only invoke fsync  if a previous fsync  is still in flight—losing at most 2 
updates.

Fast-notify Optimization: Use a shared counter between user and kernel to skip 
redundant syscalls when no new fsync is required.

Configuration
Throughput 
(req/s)

Notes

no AOF 87 k (no durability)

everysec 72 k Might lose ≈ 7.2×10⁴ updates on crash

alwayson 13 k (fsync on every write)

Batch 1 ≈ 19 k Loss ≤ 1 update

Batch 3 ≈ 43 k +1.7× vs. everysec, loss ≤ 3 updates

Batch 12 ≈ 48 k +1.9× vs. everysec, loss ≤ 12 updates

Batch 24 ≈ 50 k +2.1× vs. everysec, loss ≤ 24 updates

Batch 48 ≈ 53 k +2.3× vs. everysec, loss ≤ 48 updates

Delayed-fsync 40 k ≤ 2 updates lost; ≈ 4.15× faster than alwayson

Delayed-fsync 
+ Fast-notify

65 k
≤ 2 updates lost; ≈ 10% slower than everysec, but 5 orders 
of magnitude fewer losses (2 vs. 7.2×10⁴)

Measured Performance (Figure 7):

 

4. Experiments  

4.1 Experimental Setup  

Server A: Dual Intel Xeon Gold 5418Y (24 cores @ 2.00 GHz, 45 MB LLC, 256 GB DDR5)

Server B: Dual Intel Xeon E5-2697 v2 (48 cores @ 2.7 GHz, 30 MB LLC, 256 GB DDR3)

All numbers are the geometric mean of 10 runs unless otherwise noted.

4.2 Performance Comparisons  

1. DeepFlow (Microservices Tracing)

Native (no tracing):

1 KB response: 250 k req/s

256 KB response: 47 k req/s

At development time, the application author declares which global variables or functions an 
extension may access (e.g., read(pid) , write(r->headers) , call get_time() ).

At deployment time, the extension manager chooses a minimal set of capabilities for each hook 
(adhering to “least privilege”).

bpftime Extension Runtime: A lightweight, in-process framework that:

Uses a verifier similar to eBPF’s to guarantee extension bytecode matches the declared EIM 
constraints—zero runtime cost in user space.

Leverages Intel Memory Protection Keys (MPK) via an ERIM-style approach to enforce in-process 
isolation without context switches.

Applies binary rewriting to “conceal” hookpoints so that, if no extension is loaded, there is literally 
no added cost at that hook.

Maintains compatibility with existing eBPF tools (bcc, libbpf, bpftrace) by intercepting and rewriting 
eBPF loading and Map operations (bpftime Maps).

2. Implementation  

2.1 EIM Model  

1. Development-Time EIM Specification

State Capabilities

Written as read(var)  or write(var)  to specify allowed global variables or struct-field 
accesses.

Example:

Function Capabilities

Specify which host functions an extension may call, including their prototypes and optional 
pre/post-conditions.

Example:

State_Capability(
  name      = "readPid",
  operation = read(ngx_pid)
);

Function_Capability(
  name        = "nginxTime",
  prototype   = (void) -> time_t,
  constraints = { return_value > 0 }
);
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ubpf rbpf bpftime native

Tested on eight microbenchmarks ( strcmp match , log2 , prime , return directly , memcpy ,
switch , strcmp mismatch , memory a + b ).

On average, bpftime is 1.53×faster than ubpf and 1.72×faster than rbpf.

3. Extension Load Latency

Instrument malloc hook and measure dynamic loading overhead:

bpftime: ~ 48 ms to load the extension.

LD_PRELOAD: ~ 30 ms.

4. Cost Breakdown of a Hookpoint

Direct empty function call: 106 ns

Through bpftime trampoline: 190 ns

Hidden hookpoint (no extension loaded): saves ~ 106 ns per call.

MPK Enable/Disable: No significant impact on average latency.
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