
eGPU: Extending eBPF Programmability and Observability to
GPUs

Yiwei Yang
UC Santa Cruz

USA
yzhen165@ucsc.edu

Tong Yu
eunomia-bpf Community

China
yt.xyxx@gmail.com

Yusheng Zheng
UC Santa Cruz

USA
yyang363@ucsc.edu

Andrew Quinn
UC Santa Cruz

USA
aquinn@ucsc.edu

ABSTRACT
Precise GPU observability and programmability are essential for
optimizing performance in AI workloads and other computation-
ally intensive high-performance computing (HPC) applications.
In this paper, we introduce eGPU, the first framework and eBPF
runtime that dynamically offloads eBPF bytecode onto GPUs via
dynamic PTX injection. Designed primarily for observability, our
system leverages real-time GPU telemetry, eBPF-based dynamic
instrumentation, and automated performance analysis to pinpoint
bottlenecks at multiple layers—including kernel execution, mem-
ory transfers, and heterogeneous compute orchestration—without
incurring significant overhead or interrupting active GPU kernels.
By dynamically compiling eBPF programs into PTX snippets and
injecting them directly into running GPU kernels, eGPU provides
fine-grained, low-overhead instrumentation that seamlessly inte-
grates with existing eBPF ecosystems. Our initial micro-benchmark
evaluation demonstrates that eGPU achieves low instrumentation
overhead while providing high-resolution performance insights.
Ultimately, eGPU opens a pathway toward future programmable
GPU infrastructures capable of dynamically adapting to diverse
and evolving workload requirements.

1 INTRODUCTION
The rapid growth of data-intensive and computationally demanding
workloads—ranging from large-scale machine learning and high-
performance computing (HPC) simulations [10, 13, 19] to graphics
rendering [12] and large language models [6]—has increasingly
relied on GPU acceleration to achieve desired performance and
throughput. As these GPU-powered systems scale, precise observ-
ability and low-overhead instrumentation become essential for
diagnosing performance bottlenecks, optimizing resource usage,
and identifying anomalous behavior at runtime.

Existing GPU instrumentation approaches, such as NVIDIA’s
CUDAProfiling Tools Interface (CUPTI) [11] and binary-instrumentation
frameworks like NVBit [14], offer insights into GPU performance
but often incur substantial overhead or require invasive modifi-
cations that interrupt GPU kernels. Meanwhile, Linux’s extended
Berkeley Packet Filter (eBPF) has emerged as a powerful observ-
ability framework, traditionally employed in network analytics [5]
and system profiling [16, 18]. eBPF allows lightweight, sandboxed

instrumentation programs to execute in kernel space without in-
trusive kernel changes or performance penalties. However, exist-
ing eBPF techniques remain CPU-centric, constrained by frequent
kernel-user space context switches and limited visibility into the
GPU execution model.

Applying eBPF to GPU workloads presents unique challenges:
GPU execution models feature asynchronous kernel launches, par-
allel thread execution, and specialized memory hierarchies, making
instrumentation significantly more complex and prone to high over-
head. Furthermore, eBPF’s inherent CPU-centric design does not
directly extend to GPU hardware without novel translation and
runtime adaptation strategies.

To bridge this gap, we introduce eGPU, the first observability
framework and eBPF runtime that dynamically extends eBPF instru-
mentation into GPU kernels via runtime PTX injection. Specifically,
eGPU compiles eBPF bytecode into NVIDIA’s Parallel Thread Ex-
ecution (PTX) intermediate representation at runtime and injects
this instrumentation directly into actively executing GPU kernels.
Leveraging user-space eBPF uprobes [? ], shared-memory maps,
and real-time GPU telemetry, eGPU provides fine-grained GPU
instrumentation with minimal runtime overhead. Unlike previous
GPU profiling solutions, our approach allows instrumentation to be
dynamically added, modified, or removed in running GPU kernels
without interrupting their execution.

Moreover, while initially demonstrated through precise GPU ob-
servability, the broader significance of dynamically injecting eBPF
onto GPUs extends beyond instrumentation alone. Our methodol-
ogy opens a window for programmable GPU computing, potentially
enabling adaptive runtime kernel optimizations, dynamic GPU re-
source management, real-time security policy enforcement, and
other novel runtime GPU modifications previously inaccessible
to existing static or high-overhead instrumentation approaches.
The code is open-sourced under the https://github.com/eunomia-
bpf/bpftime repo.

In summary, we make the following core contributions:

• We introduce eGPU, the first system to dynamically offload eBPF
instrumentation and bytecode directly onto running GPU kernels
using real-time PTX injection, significantly reducing instrumen-
tation overhead compared to existing methods.

• We detail the design and implementation of eGPU, which inte-
grates kernel-level and user-space eBPF instrumentation hooks,
runtime PTX generation, and shared-memory synchronization,



Yiwei Yang, Tong Yu, Yusheng Zheng, and AndrewQuinn

providing a seamless, low-overhead observability platform for
modern HPC and AI workloads.

• We evaluate eGPU through initial micro-benchmark experiments
measuring GPU memory access latency instrumentation, demon-
strating practical low overhead and high-resolution insights into
GPU execution.

• We discuss broader implications and future possibilities enabled
by eGPU, highlighting its potential as foundational infrastructure
for dynamic GPU computing, runtime optimization, and GPU
security.
The rest of the paper proceeds as follows. We first discuss related

work in eBPF, GPU observability, and large-scale system instru-
mentation in §3. Next, we present the detailed design and imple-
mentation of eGPU in §5. We then provide an in-depth evaluation
in §7. Finally, we summarize our findings, limitations, and potential
future directions in §8.

2 BACKGROUND
In this section, we will introduce the foundational concepts that
underpin our discussion in the subsequent sections.

2.1 bpftime
kernel-based eBPF operations, particularly uprobes, suffer from
significant overhead due to frequent context switches. By mov-
ing these operations into user space, bpftime removes the need
for multiple context switches, providing up to a 10x performance
boost. This approach also improves configurability, reduces security
risks associated with kernel-level privileges, and allows for effi-
cient syscall hooking within processes. Furthermore, bpftime[17]
supports user-space eBPF Maps in shared memory and remains
compatible with existing eBPF development tools such as clang
and libbpf, even providing CO-RE support through BTF. Ultimately,
bpftime showcases a more streamlined, flexible, and secure runtime
for eBPF in user space. Historically, extended Berkeley Packet Filter
(eBPF) programs have been largely confined to the kernel space
due to their close integration with low-level system operations
like networking, tracing, and security enforcement. The uprobe
mechanism in eBPF permits instrumentation at user-level function
entry or exit points, but when managed by the kernel, it often in-
curs performance penalties caused by the overhead of switching
execution contexts between user space and kernel space.

These overheads stem from the additional steps the operating
systemmust take each time a probe fires, including saving processor
states and transferring control to the kernel. Over multiple probes
or high-event scenarios, this latency can become pronounced, ulti-
mately throttling system throughput and the speed of data collec-
tion. Bymoving these uprobes and other hooks to user space instead,
the bpftime framework significantly reduces these transitions, ac-
celerating tracing operations without sacrificing functionality. This
user-space approach also bypasses the need for certain kernel-level
permissions, diminishing the kernel’s attack surface and lower-
ing barriers for developers and operators who wish to leverage
eBPF without full administrative privileges. Moreover, the bpftime
system employs binary rewriting to achieve safe and efficient hook-
ing of functions, thus enabling advanced eBPF-based observability
for processes without requiring reboots or code recompiles. With

support for shared memory eBPF Maps, bpftime extends its capabil-
ities to multi-process scenarios and control-plane interactions, all
while remaining compatible with established eBPF toolchains and
preserving Compile Once – Run Everywhere (CO-RE) functionality.

2.2 PTX JIT
PTX (Parallel Thread Execution) serves as an intermediate repre-
sentation for NVIDIA GPUs, offering a device-independent layer
for parallel computations, which is faster than NVBit[9, 14] tools.
PTX Just-In-Time (JIT), used in[7, 8] compilation allows developers
to convert PTX code into GPU-specific machine instructions on
the fly, enabling them to adapt and optimize their programs in real-
time. This capability extends beyond simple runtime compilation:
it facilitates dynamic instrumentation by letting users intercept and
modify PTX instructions before they are turned into final machine
code (SASS). In doing so, developers can embed profiling counters,
memory checks, or custom analytics directly into the GPU kernel
with minimal overhead. Because PTX JIT operates at this higher-
level IR—rather than at the raw binary level as in frameworks
like NVBit—it often delivers superior performance, as it bypasses
the complexity of rewriting fully compiled machine instructions.
This leads to highly optimized code tailored to the specific GPU
architecture, capitalizing on features such as register usage and
warp scheduling. Additionally, PTX JIT integrates naturally with
existing NVIDIA toolchains (including NVCC and NVRTC), let-
ting users refine or generate specialized kernels without leaving
familiar workflows, and removing the need for time-consuming
offline recompilation every time a kernel needs to change or be
instrumented.

3 RELATEDWORK
Meta’s AI observability infrastructure[2] and many other tools[1,
3, 4] illustrates a multi-layered approach to monitoring, perfor-
mance introspection, and fleet-wide optimization for large-scale
AI workloads. At the foundational level, Dynolog—a distributed
telemetry daemon—collects bare-metal metrics on CPU, GPU, and
other specialized ASICs across Meta’s large, heterogeneous data
center fleet. These low-overhead measurements (e.g., device power,
utilization, FLOPs/sec) act as key indicators of efficiency, helping
identifywhether hardware resources are used effectively. To address
device-specific complexities—such as Nvidia GPU’s limited hard-
ware counters—Meta combines heuristic estimation (via DCGM)
and selective, more precise tracing (via CUPTI). Building atop this
telemetry, Meta employs end-to-end profiling tools like PyTorch
Profiler, Kineto, and Strobelight/BPF to capture fine-grained perfor-
mance data. Through Strobelight’s integration with BPF, users can
attach uprobes to CUDA and PyTorch memory operations without
instrumentation, supporting real-time, secure, and low-overhead
profiling. This technique helps track GPU memory leaks, bottle-
necks, and device-to-host interaction patterns.

Because Meta runs tens of thousands of GPU jobs daily, man-
ual analysis is impractical. To address scale, Meta Performance
Profiling/Analysis Platform automates trace collection, stitching,
and analysis across multiple hosts and profilers. Its intelligence
layer highlights common inefficiencies—such as data starvation,
suboptimal kernel usage, or imbalanced workloads—allowing AI



eGPU: Extending eBPF Programmability and Observability to GPUs

eBPF program source

Existing eBPF toolchains：
clang/bpftool/bpftrace…

eBPF userspace applications

   
eBPF bytecode

bpf function call

CUDA code

    Share memory

inlineHook

tracepoint

uprobe

socket
attach

Userspace
inject

bpftime: userspace 
eBPF

ptx injection

eBPF maps

verifier program
JIT 

compiler

kprobe

bpf syscall

load

Kernel space

JIT 
compiler

Figure 1: System Design

developers to optimize code paths or reconfigure hardware usage.
Additionally, by aggregating profile data over time, the platform
uncovers long-term trends, such as sudden regressions in kernel
duration or patterns in resource consumption that suggest deeper
tuning opportunities. Finally, fleet-level resource attribution dash-
boards break down GPU hours or FLOPs usage by model, user,
or product group, ensuring that optimization efforts target the
largest consumers of compute time. This data can inform priori-
ties between framework-level improvements (e.g., refining PyTorch
kernels) and model-specific optimizations (e.g., restructuring em-
bedding tables or adjusting hyperparameters). Collectively, these
workflows and tools from Meta’s observability stack demonstrate
how systematic performance monitoring, automated data analysis,
and a layered telemetry architecture can enable large-scale AI sys-
tem efficiency, aligning closely with related research on kernels,
dynamic instrumentation, and just-in-time optimization strategies
in data-intensive computing environments.

4 EGPU DESIGN
Figure 1 illustrates a unified user-space eBPF environment that inte-
grates with existing eBPF toolchains, CUDA-based components, and
the traditional kernel-level bpf syscall. Starting from the top-left,
an eBPF program source is compiled using standard utilities such
as clang, bpftool, or bpftrace, which emit eBPF bytecode. That
bytecode then flows into the user-space eBPF runtime, where it is
loaded and possibly instrumented or transformed before execution.

In the center section, there is an eBPF userspace application layer
that references a userspace library (for example, libbpf). This li-
brary allows interaction with the eBPF function APIs, enabling the
application to load or call eBPF functions at run time. A critical
component in this layer is bptime-syscall.so, which provides a
user-space verifier and JIT compiler. These two elements perform
tasks typically associated with kernel-based eBPF, such as verifying
the safety of programs and translating bytecode into native instruc-
tions, but they do so without requiring kernel-level privileges. The
result is that user-space eBPF programs gain flexibility and porta-
bility while still benefiting from familiar features like verification
and just-in-time compilation.

Below the userspace, there is a bpf syscall interface that can
optionally connect this user-space layer to the kernel eBPF subsys-
tem. While the diagram highlights a user-space focused workflow,

the presence of bpf syscall ensures that eBPF bytecode or maps
can be loaded into the kernel if the system design requires deeper
kernel integration or attachment to traditional kernel hooks.

Toward the lower-middle portion, there is a shared memory
region used to hold eBPF maps. This shared memory is accessible
not only to the user-space components but also to the CUDA code
indicated on the right. By registering these maps as pinned or
pinned-like memory, both GPU and CPU contexts can observe and
update the same data structures, enabling dynamic exchange of
events and statistics without the overhead of repeated copying. This
arrangement is beneficial for high-throughput instrumentation or
data-collection scenarios.

On the right, the figure shows a CUDA environment where user-
space eBPF can be extended to generate or inject PTX code. A
JIT compiler in this context transforms eBPF bytecode into PTX
or other GPU-compatible formats, and then these GPU-extended
eBPF features can attach to hooks such as uprobe or tracepoints
within the GPU domain. The label “inlineHook” in the diagram
indicates the ability to insert instrumentation at specific points
inside CUDA code, letting developers trace GPU-side operations
in a manner similar to how eBPF operates in the kernel for CPU
processes. The eBPF program injected here can interact with the
same eBPF maps shared by the rest of the system, ensuring that
monitoring, collection, or filtering logic remains consistent across
CPU and GPU boundaries.

Another important aspect highlighted by the figure is that the
system can accommodate various “attach” targets. While kernel
eBPF commonly supports kprobe, socket, and tracepoints, the
user-space variant shown here can attach to higher-level events,
including application-level function calls or GPU hooks, accord-
ing to the user’s needs. This unified approach establishes a single
user-space eBPF solution that can be extended into GPUs while
optionally bridging back into the kernel through the bpf syscall,
depending on the deployment requirements.

In terms of insights, the design improves the accessibility of eBPF
by moving verification and compilation to user space, thus mak-
ing it easier to develop, debug, and deploy eBPF-based solutions
without requiring privileged kernel changes. At the same time, it
allows tight integration with GPU resources by leveraging PTX
injection, enabling on-device tracing, profiling, or custom event
handling. The shared memory approach guarantees low-latency
communication between user-space applications, GPU code, and
eBPF maps, which is essential for real-time or performance-critical
instrumentation. Overall, this architecture provides a flexible en-
vironment that extends the traditional power of eBPF into new
domains while preserving compatibility with the standard tooling
and ecosystem.

5 EGPU IMPLEMENTATION
In this section, we will talk about the eGPU implementation.

5.1 Checkpoint Restore
ParallelGPU OS (POS)[8], a novel OS-level system for GPU check-
pointing and restoring that runs concurrently with GPU application
execution. Its key contributions and innovations include: POS does
not require any modifications to the application. It intercepts GPU



Yiwei Yang, Tong Yu, Yusheng Zheng, and AndrewQuinn

driver API calls and constructs a runtime kernel Directed Acyclic
Graph (DAG) that captures fine-grained semantics—specifically,
which GPU buffers are read from or written to during kernel execu-
tion. By speculatively extracting buffer access patterns from kernel
arguments (with runtime validation to ensure accuracy), POS can
emulate features such as “soft copy-on-write”, “soft dirty bit”, and
“soft on-demand load”. This approach overcomes the limitations of
GPUs (which lack native dirty bits and copy-on-write support) and
enables coordinated concurrent checkpointing and restoring. POS
overlaps checkpoint/restore operations with normal GPU execution,
dramatically reducing downtime. This concurrency is achieved by
leveraging the kernel DAG to schedule memory copies and manage
dependencies without halting application progress. We leverage
the POS for PTX reconstruction.

5.2 Shared Memory
In our implementation, we use boost::managed_shared_memory
to facilitate transparent data exchange between different processes.
This shared memory region holds crucial data structures—such as
eBPF maps, input batches, or intermediate states—that both the
CPU and GPU kernels can access concurrently. By designing this
memory with direct GPU compatibility in mind, we reduce the
need to marshal data back and forth through costly copy opera-
tions. Furthermore, we anticipate the potential of next-generation
hardware like Grace Hopper architectures and CXL memory pools,
which promise to unify large memory regions with low-latency
interconnects. Such advances can seamlessly extend the capacity
and performance of managed_shared_memory, allowing kernels to
operate over broader data sets without incurring frequent synchro-
nization or replication overhead.

5.3 Synchronization
Given that multiple CPU threads and GPU kernels share data struc-
tures, synchronization must be carefully managed to avoid race con-
ditions and ensure memory consistency. We rely on several mecha-
nisms that operate at different levels. On the CPU side, standard
lock-based or lock-free data structures (e.g., using std::atomic or
Boost interprocess primitives) ensure that host processes do not
introduce inconsistent states in shared regions. Within the GPU, we
use CUDA atomic operations and device-wide memory fences to se-
rialize updates to global or shared memory. This combined strategy,
supported by awell-defined data layout in managed_shared_memory,
ensures that asynchronous updates remain visible to all participants.
For frequent small-scale synchronization events, weminimize warp-
level conflicts by having only a small subset of threads perform
atomic operations, whereas the rest of the kernel continues to pro-
cess data in parallel.

5.4 PTX Generation & Injection
Our system performs eBPF or application-specific code transforma-
tions into PTX to enable GPU-side instrumentation and computa-
tion. When user-space or eBPF logic requests that certain functions
be offloaded or traced on the GPU, our JIT compiler generates spe-
cialized PTX snippets. These are then dynamically injected into
the running kernel through device-resident hooks. We refer to this
technique as “PTX injection,” which allows us to intercept or insert

instructions without tearing down the existing kernel context. This
approach helps reduce overhead compared to stopping the kernel,
recompiling the entire codebase, and relaunching it.

Once injected, the PTX code can interoperate with eBPF maps
or other shared memory buffers, granting it direct access to the
same data structures used by the CPU side. PTX injection creates
a flexible environment for GPU instrumentation, tracepoints, and
user-defined logic that can adapt in real time as new workloads
arrive or instrumentation needs change. By carefully managing
memory barriers and code patching points, we ensure that newly
injected PTX interacts cleanly with the previously running kernel
components.

In sum, eGPU integrates C/R, shared memory, robust synchro-
nization, and PTX-based offloading to deliver a low-overhead, adap-
tive GPU computation model. Persistent kernels eliminate repeated
launches, shared memory reduces copying costs, synchronization
primitives guard against data hazards, and PTX injection enables
fine-grained dynamic instrumentation. Looking ahead, improved
hardware features in Grace Hopper and CXL memory pools are
poised to amplify these benefits, further minimizing overhead and
expanding the scope of user-extended GPU workloads.

6 USE CASE
6.1 GPU Memory Observer and CXL.mem

Simulator
To achieve fine-grained observability of GPU memory behavior,
eGPU instruments low-level memory operations—specifically the
load (LD) and store (ST) instructions on NVIDIA GPU architectures.
These instructions form the core of the GPU’smemory accessmodel,
and by capturing each LDR and STR operation, our tool provides
unprecedented insight into memory bandwidth utilization, access
patterns, and contention that prior work could not achieve.

We leverage eBPF-based instrumentation to hook into the GPU
kernel events corresponding to LD and ST operations. By placing
probes at key functions in the CUDA driver stack, we capture
metadata such as the memory address, access size, and timestamp
for each operation. This detailed logging enables the computation
of real-time metrics such as memory bandwidth. For example, the
bandwidth over a time window 𝑇window is given by:

𝐵𝑊 =

∑𝑁
𝑖=1 Bytes𝑖
𝑇window

, (1)

where Bytes𝑖 is the number of bytes transferred in the 𝑖-th operation,
and 𝑁 is the total number of memory operations observed in that
window. In addition, the aggregated data reveals access patterns
(e.g., coalesced versus scattered accesses) and contention levels
when multiple streaming multiprocessors (SMs) perform memory
operations concurrently.

Beyond observation, we simulate a second tier of memory us-
ing CXL.mem by introducing dynamic latency insertion into the
observed memory operations. The objective is to emulate the be-
havior of CXL-attached memory, which typically exhibits higher
latency and lower bandwidth compared to local GPU memory. In
our model, the effective access latency for a memory operation is



eGPU: Extending eBPF Programmability and Observability to GPUs

1B 2B 4B 8B 16
B

32
B

64
B

12
8B

25
6B

51
2B

10
24

B
20

48
B
40

96
B
81

92
B

16
38

4B

32
76

8B

65
53

6B

13
10

72
B

26
21

44
B

52
42

88
B

10
48

57
6B2M 4M

Byte

0.0

0.2

0.4

0.6

0.8

1.0

ns

1e12

10
03

43
75

66

10
10

01
03

97

10
01

81
91

02

99
82

18
46

7

10
09

01
86

66

10
03

62
95

51

10
07

08
71

70

10
09

66
34

13

10
01

31
56

48

10
01

49
13

77

10
05

79
98

96

10
04

78
29

39

10
19

99
26

20

10
13

46
95

87

20
38

44
28

89

30
49

75
31

59

60
96

08
05

85

11
54

90
20

29
5

21
86

76
83

89
6

47
20

36
77

07
6

90
19

04
70

96
9

18
04

24
72

18
9834
18

43
99

40
45

End to end latency (100 lookups)

Latency
iGuard baseline

Figure 2: Runtime Overhead

expressed as:

𝑇
(CXL)
access = 𝑇

(local)
access + Δ𝑡 (pattern, 𝐵𝑊curr), (2)

where𝑇 (local)
access is the native latency for accessing local GPU memory,

and Δ𝑡 (pattern, 𝐵𝑊curr) is a dynamic delay function that depends
on the observed access pattern (e.g., sequential vs. random) and
the current memory bandwidth utilization 𝐵𝑊curr. For instance,
sequential (streaming) accesses may incur a smaller additional delay
compared to random accesses, while high contention (i.e., when
𝐵𝑊curr nears the CXL link capacity) further increases Δ𝑡 .

This dynamic delay model enables the emulation of a two-tier
memory system where data may reside in either fast local mem-
ory or slower CXL-attached memory. Our experiments compare
the performance of GPU kernels with and without the CXL.mem
simulation enabled. Memory-bound kernels, in particular, demon-
strate a significant increase in effective latency—up to 2–3×—when
subjected to the additional delays, thus highlighting the trade-offs
between increased memory capacity and reduced access speed.
These findings align with prior work on CXL.mem systems [15].

6.2 LLM CPU-GPU collaborative caching
Large Language Models (LLMs) push the limits of GPU memory,
often necessitating a collaborative caching strategy between CPU
and GPU to manage their massive state. Critical to performance is
deciding which data resides in fast GPU memory versus what is
held in CPU memory and fetched on demand. An effective caching
system must intelligently handle cache evictions and prefetching
to minimize data transfers. eGPU aids in this process by provid-
ing detailed observability into cache behavior and memory access
patterns across the CPU-GPU boundary. By tracing events such as
page faults, DMA copy calls, or unified memory migrations, the
tool reveals which model parameters or activations are accessed
frequently and which remain idle. This information enables engi-
neers to fine-tune cache policies—for example, ensuring that the
most-accessed weights stay on the GPU, while less frequently used
data is staged in CPU memory until needed.

Cache eviction policies are crucial for managing limited GPU
memory. A common strategy is Least Recently Used (LRU),
where, upon reaching capacity, the data that has not been used for
the longest time is evicted. LRU is simple and effective, and many
AI systems adopt it by default for GPU memory caches. For exam-
ple, offloading frameworks may move the least recently accessed
layers or expert networks to CPU memory first. An alternative

is Frequency-Based Eviction (LFU), which retains items that
are accessed most frequently. In scenarios where a small subset
of model weights or expert networks dominates access patterns,
frequency-based eviction can outperform LRU. In addition, static
caching approaches, where certain data is pinned in GPU memory
based on domain knowledge (e.g., keeping the most critical layers
on GPU), are often combined with dynamic policies to yield optimal
results. A hybrid policy might, for instance, evict the oldest conver-
sation context in a multi-turn dialogue system while maintaining
an LRU strategy for overall session data. eGPU ’s insights into
cache behavior help verify the effectiveness of these strategies by
monitoring cache hit rates and identifying excessive data transfers.

Beyond eviction, shared memory strategies between CPU and
GPU are vital for performance. NVIDIA’sUnifiedMemory creates
a single address space spanning both CPU and GPU, automatically
migrating pages on demand via page-fault mechanisms. Although
unified memory simplifies programming, its performance depends
on the observed access patterns. eGPU can highlight cases where
frequent page faults occur for the same data, suggesting that man-
ual caching (such as using pinned host memory) might be more
efficient. Pinned memory enables faster DMA transfers and tech-
nologies like Direct Host Access allow GPU kernels to read from
CPUmemory directly over PCIe without waiting for full data copies.
Such techniques can overlap data transfers with computation to
reduce latency.

Additional shared memory optimizations include the use of zero-
copy buffers and stream-ordered prefetching. Zero-copy buffers
allow GPU threads to access host memory directly, reducing redun-
dant data movements, while prefetching proactively copies data to
the GPU ahead of its use. In real-world use cases, such as model
offloading in systems like DeepSpeed Zero-Inference or caching
key/value matrices in transformer-based models, a well-tuned col-
laborative caching system can maintain high cache hit rates and
reduce transfer overhead. The observability provided by eGPU en-
sures that caching strategies are working as expected, facilitating
rapid training iterations and lower inference latency in large-scale
LLM deployments.

Figure 2, as a micro-benchmark compare against [9] of show-
casing how much effective memory caching is. The baseline is
instrumenting mov instruction and replacing the original logic
with moving memory to the host. We are calling it gpumemtrace.
The latency of NVBit for instrumentation is too slow as shown
in the graph. As shown with the value size of the hashmap, the
performance degraded from 32KB. This is because it can not fit in
the eBPF stack and must be stored in a global map.

7 EVALUATION
We evaluated eGPU on a dual-socket Intel Xeon E5-2697-v2 proces-
sor (48 cores, 2.7 GHz, 30 MB LLC) equipped with 256 GB DDR3
RAM and an NVIDIA P40 GPU.

7.1 Micro-benchmark Performance
We initially assessed the instrumentation overhead introduced by
eGPU through a latency-focused micro-benchmark. Specifically, we
measured GPU memory access latency while instrumenting load



Yiwei Yang, Tong Yu, Yusheng Zheng, and AndrewQuinn

and store operations, comparing eGPU with NVBit-based instru-
mentation (gpumemtrace [14]). Both systems were evaluated using
a set of operations with varying memory access sizes.

Our micro-benchmark results, as depicted in Figure ??, demon-
strate that eGPU introduces significantly lower instrumentation
overhead compared to NVBit-based approaches. While NVBit ex-
hibited substantial latency increases due to heavy instrumentation
overhead, eGPU maintained relatively stable and low latencies
across smaller memory access sizes (below 128 KB). Beyond 128 KB,
latency moderately increased, while still lower than the baseline.

These results validate our key design decision: dynamically in-
jecting lightweight PTX instrumentation at runtime significantly
reduces overhead compared to traditional GPU instrumentation
methods.

7.2 Discussion and Limitations
While our micro-benchmark clearly demonstrates eGPU’s low in-
strumentation overhead, we acknowledge that our current evalua-
tion scope is limited. Specifically, we have not yet conducted exten-
sive end-to-end performance evaluations on complex, real-world
workloads such as large-scale machine learning models or HPC
simulations. Furthermore, overhead associated with PTX injection
and JIT compilation at kernel initialization, although modest in our
tests, may be more pronounced in workloads involving numerous
small, short-lived kernels.

Future evaluations will address these limitations by assessing
eGPU on realistic GPU workloads, including detailed comparisons
of overall runtime, throughput, and system resource utilization.
Additionally, further optimizations to reduce PTX compilation over-
head and enhanced synchronization methods will be investigated
to ensure broader applicability and efficiency in diverse production
scenarios.

8 CONCLUSION
Our preliminary results indicate that eGPU successfully reduces
overhead by avoiding frequent kernel launches, enables rapid data
exchange through shared memory, and accommodates dynamic
code injection with minimal interruption to active kernels. Per-
sistent kernels ensure long-lived GPU occupancy, which stream-
lines computational pipelines and balances load more effectively for
streaming or irregular tasks. The use of boost::managed_shared_memory
allows the CPU and GPU to operate over a common data space,
lowering the cost of repeated transfers and simplifying concurrency
control. Meanwhile, PTX injection grants the ability to adapt or
instrument GPU code at run time without reinitializing the entire
runtime environment, making it highly suitable for scenarios that
demand real-time responsiveness.

Although the approach shows promise, certain limitations re-
main, including JIT compilation overhead and managing smaller
workload kernels under checkpoint restore manner. Additional
optimizations—such as adjusting the number of streaming mul-
tiprocessors per kernel or using hardware-accelerated contexts
on newer GPU architectures—can further improve performance.
We plan to explore broader device contexts and memory-sharing
paradigms, especially with upcoming Grace Hopper GPUs and CXL
memory pools, to expand the scope and scalability of our solution.

Overall, our initial findings encourage further refinement of per-
sistent kernel strategies, tighter synchronization mechanisms, and
flexible PTX-based instrumentation, with the ultimate goal of deliv-
ering a low-latency, high-throughput framework for GPU-centric
workloads.

REFERENCES
[1] Auto-instrumentation for gpu performance using ebpf, 2025.
[2] Valentin Andrei. System@scale: Ai observability. https://atscaleconference.com/

systemscale-ai-observability/, 2024. Retrieved January 2024.
[3] Josie E Rodriguez Condia, Juan-David Guerrero-Balaguera, Fernando F Dos San-

tos, Matteo Sonza Reorda, and Paolo Rech. A multi-level approach to evaluate
the impact of gpu permanent faults on cnn’s reliability. In 2022 IEEE International
Test Conference (ITC), pages 278–287. IEEE, 2022.

[4] Bengisu Elis, David Boehme, Olga Pearce, and Martin Schulz. A mechanism to
generate interception based tools for hpc libraries. In European Conference on
Parallel Processing, pages 107–120. Springer, 2024.

[5] Yoann Ghigoff, Julien Sopena, Kahina Lazri, Antoine Blin, and Gilles Muller.
{BMC}: Accelerating memcached using safe in-kernel caching and pre-stack
processing. In 18th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 21), pages 487–501, 2021.

[6] Yue Guan, Yuxian Qiu, Jingwen Leng, Fan Yang, Shuo Yu, Yunxin Liu, Yu Feng,
Yuhao Zhu, Lidong Zhou, Yun Liang, et al. Amanda: Unified instrumentation
framework for deep neural networks. In Proceedings of the 29th ACM International
Conference on Architectural Support for Programming Languages and Operating
Systems, Volume 1, pages 1–18, 2024.

[7] Mingcong Han, Weihang Shen, Guanwen Peng, Rong Chen, and Haibo Chen.
Microsecond-scale dynamic validation of idempotency for gpu kernels. arXiv
preprint arXiv:2410.23661, 2024.

[8] Zhuobin Huang, Xingda Wei, Yingyi Hao, Rong Chen, Mingcong Han, Jinyu
Gu, and Haibo Chen. Parallelgpuos: A concurrent os-level gpu checkpoint and
restore system using validated speculation. arXiv preprint arXiv:2405.12079, 2024.

[9] Aditya K Kamath and Arkaprava Basu. Iguard: In-gpu advanced race detection. In
Proceedings of the ACM SIGOPS 28th Symposium on Operating Systems Principles,
pages 49–65, 2021.

[10] Pouya Kousha, Bharath Ramesh, Kaushik Kandadi Suresh, Ching-Hsiang Chu,
Arpan Jain, Nick Sarkauskas, Hari Subramoni, and Dhabaleswar K Panda. De-
signing a profiling and visualization tool for scalable and in-depth analysis of
high-performance gpu clusters. In 2019 IEEE 26th International Conference on
High Performance Computing, Data, and Analytics (HiPC), pages 93–102. IEEE,
2019.

[11] NVIDIA. Cuda profiling tools interface (cupti), 2025. Accessed: 2025-03-02.
[12] David Pankratz, Tyler Nowicki, Ahmed Eltantawy, and José Nelson Amaral.

Vulkan vision: Ray tracing workload characterization using automatic graphics
instrumentation. In 2021 IEEE/ACM International Symposium on Code Generation
and Optimization (CGO), pages 137–149. IEEE, 2021.

[13] Du Shen, Shuaiwen Leon Song, Ang Li, and Xu Liu. Cudaadvisor: Llvm-based
runtime profiling for modern gpus. In Proceedings of the 2018 International
Symposium on Code Generation and Optimization, pages 214–227, 2018.

[14] Oreste Villa, Mark Stephenson, David Nellans, and Stephen W Keckler. Nvbit: A
dynamic binary instrumentation framework for nvidia gpus. In Proceedings of
the 52nd Annual IEEE/ACM International Symposium on Microarchitecture, pages
372–383, 2019.

[15] Yiwei Yang, Pooneh Safayenikoo, Jiacheng Ma, Tanvir Ahmed Khan, and Andrew
Quinn. Cxlmemsim: A pure software simulated cxl. mem for performance
characterization. arXiv preprint arXiv:2303.06153, 2023.

[16] Zhe Yang, Youyou Lu, Xiaojian Liao, Youmin Chen, Junru Li, Siyu He, and Jiwu
Shu. {𝜆-IO}: A unified {IO} stack for computational storage. In 21st USENIX
Conference on File and Storage Technologies (FAST 23), pages 347–362, 2023.

[17] Yusheng Zheng, Tong Yu, Yiwei Yang, Yanpeng Hu, XiaoZheng Lai, and Andrew
Quinn. bpftime: userspace ebpf runtime for uprobe, syscall and kernel-user
interactions. arXiv preprint arXiv:2311.07923, 2023.

[18] Yuhong Zhong, Haoyu Li, Yu Jian Wu, Ioannis Zarkadas, Jeffrey Tao, Evan
Mesterhazy, Michael Makris, Junfeng Yang, Amy Tai, Ryan Stutsman, et al.
{XRP}:{In-Kernel} storage functions with {EBPF}. In 16th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 22), pages 375–393, 2022.

[19] Keren Zhou, Laksono Adhianto, Jonathon Anderson, Aaron Cherian, Dejan Gru-
bisic, Mark Krentel, Yumeng Liu, Xiaozhu Meng, and John Mellor-Crummey.
Measurement and analysis of gpu-accelerated applications with hpctoolkit. Par-
allel Computing, 108:102837, 2021.

https://atscaleconference.com/systemscale-ai-observability/
https://atscaleconference.com/systemscale-ai-observability/

	Abstract
	1 Introduction
	2 Background
	2.1 bpftime
	2.2 PTX JIT

	3 Related Work
	4 eGPU Design
	5 eGPU Implementation
	5.1 Checkpoint Restore
	5.2 Shared Memory
	5.3 Synchronization
	5.4 PTX Generation & Injection

	6 Use Case
	6.1 GPU Memory Observer and CXL.mem Simulator
	6.2 LLM CPU-GPU collaborative caching

	7 Evaluation
	7.1 Micro-benchmark Performance
	7.2 Discussion and Limitations

	8 Conclusion
	References

