
Offloading the Tedious Task of Writing eBPF Programs
Paper # 74, 6 pages

ABSTRACT
eBPF offers a lightweight method to extend the Linux kernel
without modifying source code in existing kernel modules.
However, writing correct and efficient eBPF programs is
hard due to strict constraints and cumbersome debugging
processes. To tackle such an obstacle, we present SimpleBPF
to offload the tedious eBPF development task. Developers
only need to express their intent in a high-level domain-
specific language without worrying about eBPF code gener-
ation details. SimpleBPF integrates four key components: a
concise DSL, an LLM-based generator, a semantic checker,
and an LLM-based optimizer. We use few-shot prompting
and test SimpleBPF over programs written by one selected
DSL. The result shows that SimpleBPF can successfully gen-
erate valid eBPF programs that pass the kernel verifier and
exhibit competitive runtime performance. We also outline
future directions based on current findings.

1 INTRODUCTION
Modern applications increasingly require customized kernel-
level functionalities tomeet the demand of high-performance
networking [8, 13], security monitoring [9], and system ob-
servability [20, 21]. Due to strict security requirements from
the operating system kernel, developers are typically not
granted access to modify the kernel source code. The long
development cycles and release timelines of upstream kernel
maintainers make it impractical for users to wait for new
features to be officially deployed/released. As a response,
extended Berkeley Packet Filter(eBPF) [1] has emerged as a
powerful mechanism for extending the operating system’s
kernel functionality.
Even though eBPF is a lightweight kernel extension ap-

proach, writing correct eBPF programs that are allowed to
run within the kernel is not an easy task. Specifically, to en-
sure a safe and efficient execution, all eBPF programs need to
pass a verifier. There are various strict constraints (e.g., avoid
risky memory access, no unbounded loop) in the verifier,
making eBPF programs writing a complex and error-prone
task. Developers must understand the verifier’s implicit rules
and iteratively rewrite their eBPF programs to conform to
the verifier’s safety requirements, leading to a slow down of
the development speed. To make thing more complex, dif-
ferent ways of writing an eBPF program can lead to varying
JIT-compilation results and execution performance.

Currently, most of the efforts in eBPF ecosystem are cen-
tered around exploring new application scenarios where

eBPF programs can play a role. Besides, works such as K2 [18]
and Merlin [14] optimizes the generated bytecode for eBPF
programs written in high-level source languages (like C or
Rust). Comparatively little attention has been paid to re-
ducing the manual efforts to write high-quality eBPF source
programs. To the best of our knowledge, Kgent [19] is among
the few existing works that leverage large language mod-
els (LLMs) for eBPF code generation from natural language,
but it compromises on accuracy, limiting its practical us-
ability. We believe that lowering the barrier to developing
eBPF programs can help expand the usage scenarios of eBPF.
Therefore, we propose to offload the task of writing eBPF pro-
grams to an automatic code generation system, SimpleBPF,
which abstracts out all constraints and enables developers
to only focus on correctly expressing their algorithm.

Building such a system faces multiple challenges. On the
one hand, it should offer developers a more convenient way
to write the code; On the other hand, it needs to guarantee
the semantic equivalence and good execution performance.
Accordingly, we design 4 main components in SimpleBPF
to achieve this goal. First of all, SimpleBPF offers a domain-
specific language (DSL) for developers to express their cus-
tomized functionalities in a simpler way (e.g., fewer lines
of code, predefined function libraries). Secondly, an LLM-
based code generator is used to generate the eBPF expression
that can pass the verifier. Thirdly, a Z3-based [10] semantic
checker exists to ensure the semantic equivalence between
the output eBPF program and the specification. Finally, an
LLM-based optimizer further improve the eBPF program’s
execution performance by transforming it into a format that
uses fewer instructions required by the JIT compiler. We
use LLMs to leverage their strong generalization capabilities.
Instead of writing rewrite rules, users can simply provide
training examples to guide LLM to do code generation.

We choose the few-shot prompting and do a preliminary
evaluation(§6) over SimpleBPF. The result shows that Sim-
pleBPF can generate correct eBPF programs that pass the
verifier from high-level DSL specifications that use about 55%
fewer lines of code on average. SimpleBPF’s optimizer further
reduces the number of instructions for eBPF execution by
35% on average. We also outline several future directions (§7)
such as high-level DSL design for more domains, effective
feedback, and automatic hook selection.

2 PROBLEM STATEMENT
Writing “good" eBPF programs is hard because of several
reasons below:

1

3rd eBPF workshop, September 8th, 2025, Coimbra, Portugal Paper # 74, 6 pages

Programming eBPF requires engineers to learn unfamil-
iar coding patterns. Even if we can regard eBPF as a C-like
language, it is not obvious for developers who are familiar
with conventional languages to switch to eBPF. Common
tasks—like accessing a hash map—require the use of special
helper functions (e.g., bpf_map_lookup_elem) and explicit
null checks, rather than simple indexing or dictionary-like
syntax. As a result, developers must learn an entirely new
programming discipline, which includes writing code in a
verifier-compliant style that can seem unnatural.

The eBPF verifier may falsely reject valid programs due to
overly strict constraints. To ensure the execution safety, the
verifier imposes numerous constraints, such as prohibiting
unbounded loops and requiring all memory accesses to be
provably safe. Its conservative constraints force developers
not only to ensure programs’ functional correctness, but
also to conform to a particular coding style and structural
pattern. We argue that such an additional burden, optimiz-
ing programming style for verifier acceptability, introduces
unnecessary overhead and hampers developer productivity.

Execution performance is dependent on the written style. Un-
like mature compilers that can optimize inefficient patterns,
the JIT compiler performs minimal transformations for eBPF
bytecode. As a result, two semantically equivalent programs
can have various execution performance, depending on how
the JIT backend interprets their structure. To achieve good
execution performance (one of the most important reasons
for people to use eBPF), developers need to carefully craft
their programs to be JIT-friendly.

Debugging eBPF programs is slow. Given all these complex-
ities, debugging eBPF to pass the verifier is quite common.
Traditional software development environments (e.g., C and
Python) offer mature debugging tools like GDB, pdb, and
integrated step-by-step execution in IDEs (e.g., VSCode), but
eBPF lacks such interactive tooling. Developers have to rely
on runtime techniques such as bpf_trace_printk() or cus-
tom tracepoints to infer program behavior. Moreover, since
the verifier rejects invalid programs before execution, de-
velopers frequently engage in a trial-and-error process to
satisfy implicit constraints without clear guidance.
We list several snippets of bad and good eBPF programs

to illustrate the mentioned difficulties mentioned above.

2.1 Necessary rewrite to pass the verifier
2.1.1 Type conversion. eBPF program does not support

operations over types such as floating points. In fact, floating-
point variables are commonly used in network functions
such as load-balancing or rate limiting. For example, the fault
injection network function compares a random value against
a threshold to decide whether to drop a packet. Figure 1(a)
shows an example of dropping a network packet with 50%

probability rate, which cannot be expressed by eBPF without
any type conversion. In order to represent this functionality,
we need to use integer variables to replace floating-point
variables. Figure 1(b) provides one option to replace floating-
point variables by integer variables. Specifically, it scales up
the variable’s value by 10×, and the corresponding literal’s
value in the comparison condition is also multiplied by 10.

float r = get_random(); // get a random
variable following uniform distribution
between 0 and 1
if (r > 0.5) {

return XDP_DROP;
}

u32 r_scaled =
bpf_get_prandom_u32() % 10;

if (r_scaled > 5) {
return XDP_DROP;

}
(a) Verifier reject (b) Verifier accept

Figure 1: Turn float operations to integer operations.

2.2 General optimization for faster
verification and better execution

2.2.1 Combine ITE branches. The number of condition
branches is an important factor to decide the complexity of
an eBPF program. Each additional condition would exponen-
tially increase the execution path from the entry to the exit
of a program. A program with too many execution paths can
degrade performance, increase verification complexity, and
in the worst case, cause the verifier to reject it.

if (ip->field0 == 1) {
if (ip->field1 == 2) {

return XDP_DROP;
}

}

u8 merge = (ip->field0 << 4) | (ip->field1);
if (merge == 0b00010010) {

return XDP_DROP;
}

(a) JIT-unfriendly (b) JIT-friendly

Figure 2: Branch reduction via condition merging.

if (ip->field0 > 0) {
if (ip->field0 > 2 && ip->field1 == 2) {

return XDP_DROP;
}

}

if (ip->field0 > 2 && ip->field1 == 2) {
return XDP_DROP;

}

(a) JIT-unfriendly (b) JIT-friendly

Figure 3: Remove redundant ITE predicates.

Figure 2 and Figure 3 show 2 possible ways to merge
multiple conditions. One approach is to combine all variables
that are used in predicates into a temporary variable and
then comparing the temporary variable against a constant.
This offers the benefit of putting all conditions into one.
Another strategy involves checking the logical relationships
among predicates and removing redundant ones due to being
supersets of others. They both improve the code execution
performance without breaking the semantic equivalence.

2

Offloading the Tedious Task of Writing eBPF Programs 3rd eBPF workshop, September 8th, 2025, Coimbra, Portugal

Even though these optimizations are not that complex,
the current lightweight JIT-compiler performs only basic
bytecode-to-machine-code translation. Developers are re-
sponsible for manually restructuring their eBPF code in ex-
change for better performance.

2.2.2 Declare variables only when necessary. Register is
one of the scarce resources in eBPF. Specifically, eBPF pro-
vides only 11 general-purpose 64-bit registers (r0 to r10) [2],
and some of them are reserved. As a result, developers should
be cautious for variable declaration because declaring un-
used or long-lived variables can increase the number of live
registers at any point in the program. This would unneces-
sarily increase the state space that the verifier has to track.

int a = 0; int b = 0;
if (cond) { a = compute_a();
} else { b = compute_b();
}
return a + b;

(a) JIT-unfriendly

if (cond) {
int a = 0; a = compute_a();
return a;

}
int b = 0; b = compute_b();
return b;

(b) JIT-friendly

Figure 4: Do variable declaration when needed.

A good eBPF program should declare the variable only
when needed. For instance, as is shown in Figure 4, instead
of declaring variable a and b in the beginning, we should
declare them within the branch because some declarations
can be avoided if certain conditions are not satisfied.

2.3 Domain-specific optimizations
2.3.1 Take into consideration the workload feature. These

optimizations exist only when developers know beforehand
some features in a specific domain. Concretely, in eBPF, short-
circuit evaluation of logical && is preserved in the generated
bytecode. Therefore, if domain knowledge suggests that one
condition is more likely to fail, placing it before others can
reduce the number of instructions executed at runtime.
For instance, if the developers know that ip->field0 is

more likely to be less than or equal to 2 in Figure 5, checking
this condition earlier is preferable for execution.

if (ip->field0 > 2 && ip->field1 == 2) {
return XDP_DROP;

}

if (ip->field1 == 2 && ip->field0 > 2) {
return XDP_DROP;

}
(a) runtime suboptimal (b) runtime optimal

Figure 5: When we know from the domain knowledge
that ip->field0 > 2 is more likely to be false, it is
better to check this condition first.

3 ABSTRACTINGWITH TAILORED DSLS
Given the difficulties of writing verifier-friendly and JIT-
optimal eBPF programs, we advocate tailoring the domain-
specific languages (DSLs) design pairedwith a code generator

that automatically translates high-level intent into an effi-
cient eBPF expression. Writing in a DSL allows developers to
focus on high-level intent without dealing with the low-level
constraints of the eBPF verifier or specific optimizations. Be-
sides, we have the freedom to make the DSL closely resemble
the language commonly used by domain experts, minimizing
their learning curve.

eBPF Prog
(C-like language) bytecodecompiler execution

codeverifier JIT

Specification
Prog (in DSL)

Codegen

OptimizerChecker
first time

Figure 6: Our proposal: developing a new DSL and
an LLM-based code generator to output the eBPF pro-
gram. After passing the semantic checker and verifier,
an LLM-based optimizer is used to continue optimiz-
ing the program to improve execution performance.
Blue components are related to our proposal while
yellow components exist for eBPF compilation.

Figure 6 shows a proposed workflow of SimpleBPF. Devel-
opers express their customized DSL programs. Afterwards,
these programs are fed into an LLM-based code generator
and a semantic checker to output eBPF programs that have
the same semantics. If the output program passes the verifier,
an LLM-based optimizer continues to optimize the eBPF pro-
gram to improve its execution performance. Otherwise, the
code generator outputs another candidate for the verifier.
SimpleBPF separates the code generator and optimizer

into 2 parts instead of combining them because of several
benefits. (1) Each LLM prompt can be tailored specifically to
either generation or optimization, allowing the model to better
attend to the relevant patterns. (2) This avoids unnecessary
work such as optimizing semantically incorrect code output
from the generator. SimpleBPF is retargetable by supporting
various DSLs as long as developers provide sufficient training
data and a corresponding semantic equivalence checker.
We also consider designing a general-purpose language

(GPL) for eBPF code generation, but doing so offers lim-
ited practical advantage. eBPF itself resembles a constrained
general-purpose environment, so building another GPL layer
on top does not offer too many abstraction benefits. More-
over, GPLs are inherently harder to learn, as learners must
grasp a wide range of constructs that may be irrelevant to
their specific use cases. In contrast, domain experts already
possess deep knowledge of the particular problem space (e.g.,
rpc requests in microservice, lookup query in database), and
hence can adopt the corresponding DSL with fewer efforts.

3

3rd eBPF workshop, September 8th, 2025, Coimbra, Portugal Paper # 74, 6 pages

4 RESEARCH QUESTIONS
To generate valid and performant eBPF programs automati-
cally, we need to address a few following research questions.
Q1:What are key features that a high-level language should
provide? The goal of designing a new high-level language is
to provide eBPF developers with a more convenient tool in-
stead of worrying about the constraints (e.g., no unbounded
loop). To realize this goal, we should take into consideration
several aspects. First of all, expressiveness. The designed lan-
guage should cover operations that are allowed by existing
eBPF programs. Second, simplicity. It offers an easier way to
express the same functionality. This simplicity can be mea-
sured by the lines of code (loc). Third, flexibility. Ideally, we
want the language design to be flexible enough to enable
developers to provide hints (e.g., eBPF data structure choice)
to guide the code generator for better program output.
Q2: How to build the code generator? To evaluate different
ways to develop the code generator, we need to consider
several metrics. First, efficiency. It measures the speed for this
generator to produce code in deployment. Second, correctness.
Whether the generated code preserves the semantic of the
specification. Third, development effort. This refers to the
difficulty to implement and maintain the code generator.
These metrics serve as guiding principles across approaches.
Q3: How to ensure the correctness of the code generator’s out-
put? We propose building a semantic checker that systemat-
ically verifies whether the generated code faithfully imple-
ments the specification. This is a challenging task because it
requires formalizing the semantics of both the source DSL
and the target eBPF program. These models should take
into consideration the algorithm functionality, low-level
memory access, and nondeterministic behavior (e.g., ran-
dom value generation).Whether through symbolic execution,
SMT-based equivalence checking, or test-based differential
analysis, this checker is an indispensable part of SimpleBPF.
Q4: How to integrate with existing eBPF ecosystem? The exist-
ing eBPF ecosystem is widely adopted, supported by a large
and active community of developers. Instead of reinvent-
ing the ecosystem from scratch, our goal is to complement
and extend the existing development workflows. For exam-
ple, developers should have the flexibility to either program
directly in C-like eBPF syntax or start writing the newly de-
veloped DSL. Regardless of which path they choose to write
programs, developers benefit from SimpleBPF.

5 A POTENTIAL APPROACH
In this section, we want to partially answer questions in §4
through a description of SimpleBPF design (shown in Fig-
ure 6). It consists of 4 main parts: a DSL, an LLM-based code
generator, a Z3-based checker, and an LLM-based optimizer.

DSL offers developers a convenient way to express their
algorithms; the code generator and semantic checker work
together to ensure the semantic equivalence; finally, the op-
timizer optimizes the eBPF code into a JIT-friendly format
that is more performant to execute.

5.1 DSL and code generator
To make eBPF programming more accessible to domain ex-
perts, we choose to design a domain-specific language (DSL)
that is simple, expressive, and closely aligned with existing
domain terminology. We also have the flexibility to predefine
commonly used functions, allowing developers to focus on
high-level logic rather than implementing low-level opera-
tions from scratch. Additionally, the DSL design should be
extensible, providing room for incorporating new features
and abstractions as domain requirements evolve.

int x = ...
if (x > A)

if (x < A + 2)
do_sth();

return ...;

int x = ...
if (x > A && x < A + 2)

do_sth();
return ...;

int x = ...
if (x <= A) return ...;
if (x >= A + 2) return ...;
do_sth();

int x = ...
if (x == A + 1)

do_sth();
return ...;

int x = ...
if (x <= A) return ...;
if (x >= A + 2) return ...;
do_sth();

Apply rule A Apply rule B

Figure 7: Rule A→ is condition merging within an ITE
while Rule Bd is early return. For the given example,
applying Rule B first prevents us from reaching the
optimal result that is possible if Rule A were applied
before Rule B.

To translate DSL programs into verifier-compliant and
JIT-friendly eBPF code, we consider using the LLM-based
code generation approach by leveraging state-of-the-art LLM
APIs [15] [11] [12]. The current development of language
models brings LLM-based code generation several unique
advantages. Compared to synthesis-based techniques, LLMs
offer faster inference and broader applicability as not all
translation tasks can be encoded into tractable synthesis
problems. Compared to the rigid rule-based program rewrit-
ing, LLM-based solution can offer more flexibility to explore
outcomes with fewer manual efforts involved. Concretely,
there are 2 rewrite rules (A and B) in Figure 7, and their ap-
plication order can affect the output code quality. In general,
it is not surprising that a rule-based code generator might
output suboptimal results [17], often due to an incomplete
set of rewrite rules or a suboptimal application order. More-
over, humans are slow at encoding rewrite rules into code,
whereas LLMs can rapidly generalize from some human-
crafted examples to automate similar transformations for
new examples. LLMs might introduce extra challenges, such

4

Offloading the Tedious Task of Writing eBPF Programs 3rd eBPF workshop, September 8th, 2025, Coimbra, Portugal

as accuracy loss and high training cost. Addressing these
issues is essential for the system’s development.

5.2 Semantic checker
A semantic checker is necessary to ensure the correctness
of the generated eBPF programs. This checker takes as an
input the DSL program and the generated eBPF program and
checks whether they express the same functionality. There
are multiple ways to compare semantics between different
programs. A heavy-weight method applies formal proof tools
like Coq to offer strong guarantees, but this requires sig-
nificant manual proof effort and expertise. A light-weight
approach tests selected input/output pairs. This is easier to
implement but may miss subtle semantic discrepancies.

def program_A(Input) --> return Output_A

def program_B(Input) --> return Output_B

s = Solver()

s.add(program_A(Input) != program_B(Input))

if s.check() == sat --> NOT equivalent.

else: --> equivalent.

Figure 8: Semantic checker for equivalence.

These 2 main methods are not mutually exclusive. There
could be a hybrid approach: employing formal methods for
critical parts of the program, while relying on input-output
test cases to cover other parts. Here, we choose to turn in-
put and output program into SMT formula for equivalence
checking. As is shown in Figure 8, we use program_A and
program_B to represent input and output programs’ func-
tionality and use Z3 to search for counterexamples that
demonstrate behavioral differences. If there are no such coun-
terexamples, we conclude that they are equivalent.

5.3 The eBPF optimizer
We propose building an LLM-based optimizer. We also con-
sider other alternatives but rule-based optimizers require
extensive manual effort to design and maintain. Synthesis-
based optimizers [18] can be computationally expensive
and slow to scale. Our method mirrors the structure of our
LLM-based code generator: instead of DSL-to-eBPF exam-
ples, we now train the model on pre-optimization and post-
optimization eBPF program pairs (e.g., examples in §2.2), al-
lowing themodel to learn optimization patterns directly from
data. This approach offers a more scalable and automation-
friendly way to produce optimized eBPF code that improves
the execution performance. For those who choose to write an
eBPF program directly, this optimizer is a valuable addition
by turning their written program into a format that achieves
better execution performance.

6 CASE STUDY
6.1 Experiment setup
We choose an existing DSL, AppNet [22], specifically de-
signed for service mesh functions, as the basis for our evalu-
ation. An AppNet example is shown in Figure 9 to express
the behavior of randomly dropping an RPC request. A typical
AppNet program consists of multiple parts: state lists all
global variables, init() initializes all global variables, and
req(rpc) presents the service mesh function when receiv-
ing one RPC request. Detailed language design is explained
in AppNet paper [22].
state:

prob: float

init():

prob = 0.95

req(rpc):

match randomf(0, 1) < prob:

true => send(rpc, Down)

false => send(err('fault_injected'), Up)

Figure 9: An AppNet example that drops RPC requests
with 95% probability.

We adopt in-context learning of prompt engineering to
build the LLM-based code generator and optimizer.We choose
this approach at this moment instead of other alternatives
(e.g., fine-tuning) because in-context learning is a good op-
tion to start exploring a new problem space [4]. After con-
structing training examples consisting of AppNet–eBPF pro-
gram pairs, as well as pre-optimized and post-optimized eBPF
program pairs, we pass these training data through the Chat-
GPT 4o interface to guide its learning (e.g., floating point →
integer, early exit). We evaluate the synthesized eBPF code
and assess the effectiveness of optimizations.

6.2 Preliminary results.
Benchmarks and baseline. We generate eBPF implementa-
tion for AppNet programs that describe the application net-
work functions to deal with RPC requests in microservices.
Previous AppNet compiler targets 3 RPC processing plat-
forms: gRPC interceptors [5] and EnvoyNative [6], Envoy-
Wasm [7]. We write 3 AppNet programs in Table 1 for testing.
To be specific, logging means the AppNet programmaintains
some global variables and updates their value when receiv-
ing one RPC request; fault injection conditionally drops re-
quests based on specified criteria. To increase complexity,
we construct these programs using multiple global variables
and compound conditional expressions. Functionalities of
all benchmarks [3] are independent of the RPC payload. The
task of deserializing payloads from gRPC packets is orthogo-
nal to the contributions of this paper.

5

3rd eBPF workshop, September 8th, 2025, Coimbra, Portugal Paper # 74, 6 pages

Table 1: Evaluate different components of SimpleBPF over benchmarks [3]. Green represents better results.

AppNet Program Rule-based code generator LLM-based code generator Post optimization eBPF
Name Loc Loc # eBPF instr. # JIT instr. Loc # eBPF instr. # JIT instr. Loc # eBPF instr. # JIT instr.

Logging (2 vars) 11 32 125 141 24 67 67 22 67 67
Logging + Fault injection 12 36 119 145 36 119 145 29 79 101

Fault injection (Optimizable condition) 9 26 59 76 26 59 76 20 43 56

We built a rule-based code generator by extending the
AppNet compiler to target the eBPF backend. This incorpo-
rates basic program rewrite rules but does not apply any code
optimizing algorithms.We compare it against SimpleBPF and
quantify the benefits brought by the LLM-based optimizer.
Assumptions. In this work, we target the XDP hook on the
sender side for all generated eBPF programs, as the selected
AppNet programs are designed for sender-side network func-
tions. For simplicity, we assume each RPC request fits within
a single network packet to bridge the semantic gap between
AppNet, which operates at the granularity of RPC requests,
and eBPF, which processes data at the granularity of indi-
vidual packets. Generating eBPF programs for RPC requests
that span across multiple packets is left for future work.
Preliminary results. We measure the performance of 2 code
generator and LLM-based optimizer over 3 main metrics: loc,
eBPF instructions for eBPF bytecode, and # JIT instruc-
tions for execution. Loc measures the easiness to write the
program while others determine the actual performance of
eBPF program. Rule-based code generator only applies sev-
eral rewrite rules without implementing any optimizations.
We provide basic examples (with no optimization hints) for
LLM-based code generator to learn rewrite patterns.

According to the results in Table 1, AppNet reduces the loc
by 45.5% on average; the quality of post-optimization eBPF
programs is better, meaning that both LLM-based code gen-
erator and LLM-based optimizer contributes to eBPF code
optimizing, by reducing # eBPF instructions and JIT instruc-
tions by around 64% on average. We want to share 2 extra
findings. (1) writing an LLM-based code generator signif-
icantly reduces development effort, as crafting a few-shot
prompt for in-context learning requires far fewer loc than
implementing a full rule-based system (several hundreds loc
vs several thousands loc). (2) even though LLM-based op-
timizer further optimizes the output code from LLM-based
code generator, such improvement may not continue reduce
the instructions since some of the optimization rules are
already applied during LLVM bytecode generation. We con-
firm that generated eBPF programs can pass the verifier and
verify their semantic equivalence in Z3.

7 FUTUREWORK
We list directions for improvements beyond SimpleBPF.

Optimal hook selection. Hook selection [16] is essential in
eBPF code generation because different hooks lead to differ-
ent performance (e.g., latency). SimpleBPF assumes that eBPF
hooks are preselected. In the future, we want to continue
offloading developers’ burden by automatically choosing the
suitable hook that gives the best performance.
DSL design for other domains. The case study focuses on
generating eBPF programs for service mesh functions. Sim-
pleBPF can be extended to new domains (e.g., database query
and system monitoring). DSL for these domains can bring
unique challenges and opportunities for building domain-
specific code generation and optimization models.
Effective feedback from semantic checker and verifier. We
use a checker to verify the semantic correctness of eBPF code.
When mismatches are detected, SimpleBPF simply restarts
the generation process, which misses the opportunity to pro-
vide targeted and constructive feedback to guide the model.
An intriguing direction is to design effective mechanisms for
generating meaningful feedback signals from the checker, en-
abling the LLM to refine its code generation and optimization
decisions in an interactive manner.
8 RELATEDWORKS
Recent efforts on generating and optimizing eBPF programs
fall into 2 main categories: natural-language–driven source
code generation and bytecode-level optimization.

Kgent [19] leverages large language models to translate in-
formal, English descriptions into eBPF, dramatically reducing
themanual development effort. However, Kgent does not pro-
vide checker to assure the semantic equivalence. K2 [18] and
Merlin [14], by contrast, focus on optimizing eBPF bytecode
by introducing an additional optimization pass that produces
semantically equivalent but more performant versions for
the verifier. Our work is complementary by addressing the
problem of generating eBPF programs from high-level DSLs.

9 CONCLUSION
We propose a new system, SimpleBPF, that contains a high-
level DSL and an affiliated LLM-based code generator to offer
a more convenient way for eBPF development. Preliminary
results show that people can write simpler code in DSL,
and programs generated by few-shot prompt engineering
outperform the rule-based model in terms of # instructions
required for execution. We hope our proposal can encourage
more research on easier eBPF development.

6

Offloading the Tedious Task of Writing eBPF Programs 3rd eBPF workshop, September 8th, 2025, Coimbra, Portugal

REFERENCES
[1] eBPF. https://ebpf.io/. (Accessed on 04/13/2025).
[2] eBPF Instruction Set Specification, v1.0. https://www.ietf.org/archive/

id/draft-thaler-bpf-isa-00.html.
[3] Eval benchmarks. https://anonymous.4open.science/r/SimpleBPF_

benchmark-4B59/README.md.
[4] Fine-Tuning vs. In-Context Learning: A Prac-

tical Guide. https://medium.com/@heyamit10/
fine-tuning-vs-in-context-learning-a-practical-guide-08163ede6d1a.

[5] grpc interceptors. https://grpc.io/docs/guides/interceptors/.
[6] Http filters. https://www.envoyproxy.io/docs/envoy/latest/

configuration/http/http_filters/http_filters.
[7] Webassembly in envoy. https://github.com/proxy-wasm/spec/blob/

main/docs/WebAssembly-in-Envoy.md.
[8] IOVisor Authors. Introduction to express data path. https://www.

iovisor.org/technology/xdp. Accessed: 2025/05/05.
[9] Linux Authors. Introduction to ebpf lsm. https://docs.kernel.org/bpf/

prog_lsm.html. Accessed: 2025/05/05.
[10] Leonardo De Moura and Nikolaj Bjørner. Z3: An Efficient SMT Solver.

In TACAS, 2008.
[11] Google DeepMind. Gemini 1 model card. https://deepmind.google/

technologies/gemini/, 2023. Accessed: 2025-05-18.
[12] DeepSeek. Deepseek-coder: A family of open-source code language

models. https://github.com/deepseek-ai/DeepSeek-Coder, 2023. Ac-
cessed: 2025-05-18.

[13] Yoann Ghigoff, Julien Sopena, Kahina Lazri, Antoine Blin, and Gilles
Muller. {BMC}: Accelerating memcached using safe in-kernel caching
and pre-stack processing. In 18th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 21), pages 487–501, 2021.

[14] Jinsong Mao, Hailun Ding, Juan Zhai, and Shiqing Ma. Merlin: Multi-
tier optimization of ebpf code for performance and compactness. In
ACM ASPLOS, 2024.

[15] OpenAI. Gpt-4 technical report. https://arxiv.org/abs/2303.08774, 2023.
Accessed: 2025-05-18.

[16] Farbod Shahinfar, Sebastiano Miano, Giuseppe Siracusano, Roberto
Bifulco, Aurojit Panda, and Gianni Antichi. Automatic kernel offload
using bpf. In ACM HotOS, 2023.

[17] Eelco Visser. A survey of strategies in rule-based program transforma-
tion systems. Journal of Symbolic Computation, 2005.

[18] Qiongwen Xu, Michael D. Wong, Tanvi Wagle, Srinivas Narayana, and
Anirudh Sivaraman. Synthesizing safe and efficient kernel extensions
for packet processing. In ACM SIGCOMM, 2021.

[19] Yusheng Zheng, Yiwei Yang, Maolin Chen, and Andrew Quinn. Kgent:
Kernel extensions large language model agent. In Proceedings of the
ACM SIGCOMM 2024 Workshop on EBPF and Kernel Extensions, 2024.

[20] Yuhong Zhong, Haoyu Li, Yu Jian Wu, Ioannis Zarkadas, Jeffrey Tao,
Evan Mesterhazy, Michael Makris, Junfeng Yang, Amy Tai, Ryan
Stutsman, et al. {XRP}:{In-Kernel} storage functions with {eBPF}.
In 16th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI 22), pages 375–393, 2022.

[21] Yang Zhou, Xingyu Xiang, Matthew Kiley, Sowmya Dharanipragada,
and Minlan Yu. {DINT}: Fast {In-Kernel} distributed transactions
with {eBPF}. In 21st USENIX Symposium on Networked Systems Design
and Implementation (NSDI 24), pages 401–417, 2024.

[22] Xiangfeng Zhu, Yang Zhou, Yuyao Wang, Xiangyu Gao, Arvind Krish-
namurthy, Sam Kumar, Ratul Mahajan, and Danyang Zhuo. High-level
programming for application networks. In USENIX NSDI, 2025.

7

https://ebpf.io/
https://www.ietf.org/archive/id/draft-thaler-bpf-isa-00.html
https://www.ietf.org/archive/id/draft-thaler-bpf-isa-00.html
https://anonymous.4open.science/r/SimpleBPF_benchmark-4B59/README.md
https://anonymous.4open.science/r/SimpleBPF_benchmark-4B59/README.md
https://medium.com/@heyamit10/fine-tuning-vs-in-context-learning-a-practical-guide-08163ede6d1a
https://medium.com/@heyamit10/fine-tuning-vs-in-context-learning-a-practical-guide-08163ede6d1a
https://grpc.io/docs/guides/interceptors/
https://www.envoyproxy.io/docs/envoy/latest/configuration/http/http_filters/http_filters
https://www.envoyproxy.io/docs/envoy/latest/configuration/http/http_filters/http_filters
https://github.com/proxy-wasm/spec/blob/main/docs/WebAssembly-in-Envoy.md
https://github.com/proxy-wasm/spec/blob/main/docs/WebAssembly-in-Envoy.md
https://www.iovisor.org/technology/xdp
https://www.iovisor.org/technology/xdp
https://docs.kernel.org/bpf/prog_lsm.html
https://docs.kernel.org/bpf/prog_lsm.html
https://deepmind.google/technologies/gemini/
https://deepmind.google/technologies/gemini/
https://github.com/deepseek-ai/DeepSeek-Coder
https://arxiv.org/abs/2303.08774

	Abstract
	1 Introduction
	2 Problem Statement
	2.1 Necessary rewrite to pass the verifier
	2.2 General optimization for faster verification and better execution
	2.3 Domain-specific optimizations

	3 Abstracting with Tailored DSLs
	4 Research Questions
	5 A potential approach
	5.1 DSL and code generator
	5.2 Semantic checker
	5.3 The eBPF optimizer

	6 Case Study
	6.1 Experiment setup
	6.2 Preliminary results.

	7 Future work
	8 Related works
	9 Conclusion
	References

