
ChainIO: Bridging Disk and Network Domains with
eBPF

Anonymous Authors
ABSTRACT
Modern data-driven services—from analytical databases and
key-value stores to stream processors—suffer high tail-latencies
because each disk read and subsequent packet send/recv in-
curs a separate user-kernel crossing and redundant buffer
copy. While Linux’s io_uring now supports both block and
socket I/O with asynchronous, batched submissions, it does
not provide zero-copy transfers between storage and net-
work domains; AF_XDP delivers high-performance packet
I/O but is siloed to the network stack. No existing frame-
work transparently unifies thesemechanisms end-to-end.We
present ChainIO, an eBPF-based system that intercepts and
rewrites I/O syscalls, uses ring buffers to pass data descriptors
directly between io_uring and AF_XDP, and orchestrates
in-kernel execution to chain disk reads into network sends
(and vice versa) with full POSIX semantics, fallback safety
for unsupported cases, and zero application changes. Our
prototype works with unmodified binaries and improves
ClickHouse’s TPC-H query throughput by up to 39% (while
cutting context switches by 59% and CPU use by 14%), and
reduces 99th-percentile latency by 30% in a distributed key-
value store. ChainIO thus offers a general, safe, and high-
performance path for cross-domain I/O optimization in di-
verse data-intensive workloads.

1 INTRODUCTION
Modern data-driven services—such as distributed analytical
databases—often suffer from high tail latency because of in-
efficient user–kernel crossings and redundant buffer copies.
To address this, the Linux kernel introduced io_uring[1], an
asynchronous I/O interface that uses shared ring buffers to
reduce system calls and context switches. While io_uring
supports storage and networking, it lacks zero-copy across
domains and incurs overhead when chaining disk reads to
network sends. XDP (eXpress Data Path) is an in-kernel eBPF
framework offering sub-microsecond latency and zero-copy
forwarding. Similarly, AF_XDP[3] offers superior network
performance but can’t integrate directly with storage opera-
tions. No existing solution provides a unified framework for
automatically identifying and optimizing these cross-domain
dependencies without application modifications.

Previous research has approached this challenge from sev-
eral angles without fully solving the cross-domain problem:
FlexSC [4] and MegaPipe batch syscalls but focus on sin-
gle domains, while DPDK/SPDK and Demikernel [7] bypass

the kernel entirely but require extensive application modifi-
cations. eBPF-based solutions like XRP [9] and BPF-oF [6]
accelerate specific I/O paths (NVMe reads, remote storage)
without addressing cross-domain dependencies. Even archi-
tectural innovations like IX [2] that redesign the OS with
separate control and data planes remain siloed in network or
storage specialization, leaving a critical gap for workloads
that chain operations across both domains.

DB..
QueryPipelineEx

asm_e..

__..

[unknown]

c..

h..v..
do..

f..

sy..

d..

__..

d..

DB::Aggre..
[unknown]

do_..
en..

__mems..
D..

DB::Decimal<wide::integ..
DB:..

ha..

LZ4..

d..

g..

L..
DB::Aggregator::exec..D..

DB::De..
DB..

e..

m

exc..
do..

8/29/24, 4:34 PM flamegraph.svg

file:///Users/victoryang00/Library/Containers/com.tencent.xinWeChat/Data/Library/Application Support/com.tencent.xinWeChat/2.0b4.0.9/d519d25ef340364811bd51… 2/2

Figure 1: Flamegraph of ClickHouse Server showing
syscall overhead

As a distributed SQL database, ClickHouse’s[5] MergeTree
engine exemplifies this cross-domain problem, shown in the
profiling data in Figure 1. A typical query in ClickHouse fol-
lows this path: client query→ column-file reads (pread())
→ distribution to remote shards (send()) → network stack
→ remote node’s recv()→ disk lookup → response aggre-
gation. Its columnar storage engine issues large numbers
of small, random read() calls against compressed column
files and mark-file offsets, with each compressed-block fetch
and metadata lookup translating into a user-kernel transi-
tion. In distributed setups, remote-shard requests add further
send() and recv() calls for data fetches and Raft heart-
beats. Our profiling shows that the blocking read() syscall
alone consumes 25% of query time, while small network re-
ceives (heartbeats, shard updates) account for another 2%.
The cumulative cost of these syscalls—exacerbated by Spec-
tre/Meltdown mitigations—introduces tens of microseconds
of overhead per transition, multiplying into hundreds of mil-
liseconds on fan-out queries. When a query spans dozens
of remote partitions, each extra transition adds up quickly,
creating a critical bottleneck for interactive dashboards and
real-time analytics that cannot be solved by optimizing either
storage or networking in isolation.
We introduce ChainIO, a unified syscall-chaining frame-

work that bridges both domains. Our solution dynamically
rewrites POSIX I/O calls into batched submissions, unifies



Conference’17, July 2017, Washington, DC, USA Anonymous Authors

memory management across domains through shared re-
gions, coordinates cross-domain operations while preserv-
ing correctness, and adaptively optimizes for tail latency.
ChainIO requires no application modifications, achieving
significant performance gains by eliminating redundant con-
text switches and memory copies. This design can extend to
other services with mixed storage and network workloads
under POSIX easily.

2 DESIGN AND IMPLEMENTATION
ChainIO (Figure 2) architecture combine dynamic binary
rewriting with in-kernel eBPF programs to eliminate redun-
dant context switches while preserving POSIX semantics.
Implemented in 2000 lines of C/C++ and eBPF code, ChainIO
maintains compatibility with unmodified ClickHouse bina-
ries. ChainIO comprises three integrated components:

NIC

Application

VFS/FUSE

RDMA

Block Layer

NVMe Driver NIC Driver

Block Device NIC NIC

NIC Driver

Block Layer

Block Device

Figure 2: ChainIO Architecture

Cross-Domain Ring Bridge. Unlike simply deploying io_uring
and AF_XDP side-by-side, our core innovation is a ring
design unifying storage and network operations through
shared memory, implemented via BPF shared memory maps
that bridge user-space io_uring rings with in-kernel XDP
processing. This unified descriptor format supports both disk
SQEs (io_uring descriptors) and network SQEs (XDP frame
metadata), enabling atomic cross-domain operations and au-
tomatic dependency tracking so that network sends fire im-
mediately after disk reads complete—without extra context
switches. More specifically, ChainIO register a contiguous
user-space memory region (UMEM) with both io_uring and
AF_XDP, using it as direct DMA buffers for NVMe operations
and zero-copy packet buffers for optimized network traffic.
A custom slab allocator manages UMEM efficiently, and mul-
tiple eBPF programs—including an XDP packet router for
steering optimized-path traffic into UMEM and an IO comple-
tion handler for triggering chained operations—coordinate
end-to-end execution entirely in-kernel.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Latency (s)

TPCH 1

TPCH 6

I/O Dominate Select

-9.0%

-23.0%

-27.3% ChainIO
Baseline

Figure 3: Latency Comparison Across TCP-H Queries

Syscall-Chaining Engine. To chain POSIX I/O calls end-to-
end, ChainIO uses eBPF to intercept read(), send(), and
recv() syscalls and reroute them into a unified submission
ring. A userspace uprobes[8] handler then converts each
intercepted call into a batched io_uring request. To adapt
to Clickhouse, We instrument key MergeTree routines (e.g.,
MergeTree::readMark() and MergeTree::readData()) us-
ing USDT probes to capture compressed-column reads and as-
sociatedmetadata, preserving semantic context across syscall
boundaries with minimal overhead. It can be extended to
other services easily by changing the metadata probes.

Tail-Latency Optimizations. To reduce high-percentile la-
tencies, ChainIO employs three complementary techniques:
dynamic batch sizing, priority-aware scheduling, and light-
weight in-kernel preemption. A user-space coordinator con-
tinuouslymonitors operation latencies and dynamically tunes
the submission batch size—flushing smaller batches under
load to bound the 99th-percentile latency below 150. We also
prioritize latency-sensitive tasks, such as metadata lookups
and NURaft heartbeats, over bulk column scans to ensure
critical operations complete promptly. Finally, we route dis-
tributed querymessages and Raft heartbeats throughAF_XDP
for zero-copy, low-latency network delivery.

3 EVALUATION
We evaluated ChainIO on ClickHouse (v21.8) running on
CloudLab servers with Intel Xeon Silver 4314 CPUs, 128GB
RAM, and dual-port 100Gb Mellanox ConnectX-6 NICs. Each
server has a Samsung PM1725a NVMe SSD. We measured
performance using TPC-H at scale factor 20 on a single
NVMe-SSD, comparing our ChainIO SQPOLL + HugePage +
Registered-File configuration against a Thread-poll + pread
baseline. As shown in the Figure 3, for I/O-bound queries
such as Q6, average latency improves by up to 23%. When
running a narrow column scan (SELECT SUM(LENGTH(l_comment))),
latency improves by 27.3%. Row throughput increases by up
to 39% for I/O-dominated workloads. 99th-percentile latency
for short-running metadata queries also improves by 3.2×.

REFERENCES
[1] Jens Axboe. Efficient io with io_uring. Linux Kernel report, 2019.

urlhttps://kernel.dk/io𝑢𝑟𝑖𝑛𝑔.𝑝𝑑 𝑓 .



ChainIO: Bridging Disk and Network Domains with eBPF Conference’17, July 2017, Washington, DC, USA

[2] Adam Belay, George Prekas, Ana Klimovic, Samuel Grossman, Christos
Kozyrakis, and Edouard Bugnion. {IX}: a protected dataplane operating
system for high throughput and low latency. In 11th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 14), pages 49–65,
2014.

[3] Killian Castillon du Perron, Dino Lopez Pacheco, and Fabrice Huet.
Understanding delays in af_xdp-based applications. In ICC 2024-IEEE
International Conference on Communications, pages 5497–5502. IEEE,
2024.

[4] Livio Soares and Michael Stumm. {FlexSC}: Flexible system call sched-
uling with {Exception-Less} system calls. In 9th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 10), 2010.

[5] ClickHouse Team. Clickhouse: The fastest analytical database for ob-
servability ml genai. https://clickhouse.com/, 2025. Accessed: 2025-05-
17.

[6] Ioannis Zarkadas, Tal Zussman, Jeremy Carin, Sheng Jiang, Yuhong
Zhong, Jonas Pfefferle, Hubertus Franke, Junfeng Yang, Kostis Kaffes,
Ryan Stutsman, et al. Bpf-of: Storage function pushdown over the
network. arXiv preprint arXiv:2312.06808, 2023.

[7] Irene Zhang, Amanda Raybuck, Pratyush Patel, Kirk Olynyk, Jacob
Nelson, Omar S. Navarro Leija, Ashlie Martinez, Jing Liu, Anna Korn-
feld Simpson, Sujay Jayakar, Pedro Henrique Penna, Max Demoulin,
Piali Choudhury, and Anirudh Badam. The demikernel datapath os
architecture for microsecond-scale datacenter systems. In Proceedings
of the 28th ACM Symposium on Operating Systems Principles (SOSP),
pages 195–211, Virtual Event, Germany, 2021. ACM.

[8] Yusheng Zheng, Tong Yu, Yiwei Yang, Yanpeng Hu, XiaoZheng Lai, and
Andrew Quinn. bpftime: userspace ebpf runtime for uprobe, syscall
and kernel-user interactions, 2023.

[9] Yuhong Zhong, Haoyu Li, Yu Jian Wu, Ioannis Zarkadas, Jeffrey Tao,
Evan Mesterhazy, Michael Makris, Junfeng Yang, Amy Tai, Ryan
Stutsman, and Asaf Cidon. XRP: In-Kernel storage functions with
eBPF. In 16th USENIX Symposium on Operating Systems Design and Im-
plementation (OSDI 22), pages 375–393, Carlsbad, CA, July 2022. USENIX
Association.

https://clickhouse.com/

	Abstract
	1 Introduction
	2 Design and Implementation
	3 Evaluation
	References

