
Extending Applications 
Safely and Efficiently

Yusheng Zheng¹ • Tong Yu² • Yiwei Yang¹ • Yanpeng Hu³

Xiaozheng Lai⁴ • Dan Williams⁵ • Andi Quinn¹

¹UC Santa Cruz ²eunomia-bpf Community ³ShanghaiTech University

⁴South China University of Technology ⁵Virginia Tech

1



Extensions are everywhere

What are extensions?
• Customize software without 

modifying source code
Why do we need them?
• Different deployments, different 

needs

2



Nginx firewall example
Before deployment, user:
• Writes firewall using nginx APIs
• Associates firewall with request 

processing extension entry.
During runtime, Nginx:
• Jumps to firewall when reaching 

request processing entry.
• Executes firewall in the extension 

runtime execution context.

Nginx Extension 
Runtime

Entry Firewall

3



Extension Problems & requirements
Real-world safety 
violations:
• Bilibili CDN outage, Apache 

buffer overflow, Redis RCE
Performance penalty: 
• WebAssembly/Lua impose 10-

15% overhead
Requirements:
• Fine-grained safety and 

interconnectedness trade-offs
• Isolation
• Efficiency

4

Host Extension 
Runtime

Entry Extension

Efficiency 
(Performance 

penalty)

Isolation (Safety violation)fine-grained 
safety/interconnected

ness 
tradeoffs (Safety 

violation)



State-of-the-Art Falls Short

o Dynamic loading: efficiency but no isolation or fine-
grained safety-interconnectedness policies (LD_PRELOAD, DBI tools)

o Software Fault Isolation: safety with 10–15 % performance 
penalty (XFI [OSDI 06], NaCL [SOSP 09], RL-Box [USENIX Security 20], Wasm and Lua)

o Subprocess: strong isolation but high IPC overhead （Wedge 
[NSDI 08], Shreds [IEEE SP 16], lwC [OSDI 16], and Orbit [OSDI 22])

o Kernel eBPF uprobes: isolation at micro second-level 
trap cost, low efficiency

5



Contributions

• Up to 6x less overhead than current state-of-the-art!

6

Extension Interface 
model (EIM) Bpftime runtime

Navigate fine-grained 
safety/interconectedness trade-offs for 

extensions

Efficient support for EIM and isolation 
through userspace eBPF runtime



Outline

• Background & motivation: Extensions
• → Extension Interface Model (EIM): Fine-grained Interface
• bpftime Runtime: safety & performance
• Evaluation

7



Host Application

EIM: Extension Interface Model
• Goal: enable fine-grained safety/interconnectedness trade-offs
• Challenge: supporting per deployment tradeoffs
• Solution: 

o Two-phase specification (Development Time and Deployment Time)
oModel all resources as capabilities

1. During Development

Deployment
time

EIM Spec

2. Before Deployment

Development time
EIM Spec

Entry

Entry

At Deployment/Runtime

Extension 
Runtime

Extension
Manager

App 
Developer

Writes
Writes

Verify

Extension



EIM: Development Time Specification

• Developers annotate code for capabilities
• Automatically extracted into capability manifest

9

Host Application

1. During Development

Development time
EIM Spec

Entry

Entry
App 

Developer

Writes



EIM: Deployment Time Specification
• YAML policies specify 

safety/interconnectedness tra
deoffs

• Compact policies (avg of 30 
lines in evaluation).

10

Deployment
time

EIM Spec

2. Before Deployment

Extension
Manager

Writes



Outline

• → Background & motivation: Extensions
• Extension Interface Model (EIM): Fine-grained Interface
• → bpftime Runtime: safety & performance
• Evaluation

11



bpftime: userspace eBPF extension framework

Process

Host bpftime
Runtime

Entry Extension

bpftime Loader

verifier eBPF app

Intra-process 
extensions for 

efficiency

Compatible 
with eBPF

Verification 
for efficient
EIM support

Hardware features for 
efficient isolation

12

• Goal: efficiently support EIM and isolation
• Challenge: Existing extension runtimes use heavyweight safety 

& isolation techniques
• Solution: 

o build new design that exploits eBPF-style verification, binary rewriting, and 
hardware features to enable efficient intra-process extensions

Concealed extension 
entries use binary 
rewriting for efficiency



Outline

• Background & motivation: Extensions
• Extension Interface Model (EIM): Fine-grained Interface
• bpftime Runtime: safety & performance
• → Evaluation

13



Six Real-World Use Cases

Customization
• Nginx Firewall
• Redis Durability
• FUSE Metadata Cache

Observability
• DeepFlow
• Syscount
• Sslsniff

14

GitHub: https://github.com/eunomia-bpf/bpftime

https://github.com/eunomia-bpf/bpftime
https://github.com/eunomia-bpf/bpftime
https://github.com/eunomia-bpf/bpftime


Customization: Nginx firewall

• 5× to 6× less overhead 
than lua or 
WebAssembly

better

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

R
eq

ue
st

s 
pe

r S
ec

on
d 

(R
P

S)

15



Observability: sslsniff

• Maximum 21% 
less overhead 
than kernel eBPF

better

0

2000

4000

6000

8000

10000

12000

14000

1K 256K

R
eq

ue
st

s 
pe

r S
ec

on
d 

(R
P

S)

Kernel Uprobe bpftime Native

16



Contributions

• Up to 6x less overhead than current state-of-the-art!

17

Extension Interface model (EIM) Bpftime runtime

Navigate fine-grained 
safety/interconectedness trade-offs for 

extensions

Efficient support for EIM and isolation through 
userspace eBPF runtime

Questions?



18



Backup

19



Customization: Nginx firewall

• 5× to 6× improvement
• Less is better

20



Observability: sslsniff

• 21% less 
overhead than 
kernel eBPF

21



Four Roles in an Extension Ecosystem

22



Micro-Benchmark

Compare with eBPF:
• Uprobe Dispatch: 2.56 µs → 190 ns (14× faster)
• Syscall Tracepoint: 151 ns → 232 ns (1.5× slower)
• Memory access (Table 3): user-space read/write 2 ns vs 20 ns 

(10× faster)
• Overall: average 1.5× faster than ubpf/rbpf (Figure 11)

23



Extensions have issues

• Example issues caused by extension safety violations

• The performance penalty of existing approaches

24



Nginx example

• ddd

25



Get started
• Use uprobe to monitor 

userspace malloc 
function

• Try eBPF in GitHub 
codespace!(Unprivilidge
d container)

26



Loader & Runtime Workflow

• Intercept standard eBPF syscalls from libbpf/bcc.
• Parse EIM manifests and DWARF/BTF to generate constraints.
• Verify byte-code via kernel’s eBPF verifier with added assertions.
• JIT-Compile verified byte-code into native x86.
• Inject user-runtime via ptrace + Frida + Capstone trampolines.
• Execute extension: flip MPK key → jump to code → flip back → 

resume.

27



Efficient Safety & Isolation

• The eBPF compatibility challenge:
oLinux eBPF has tightly coupled components (compilers, runtime, kernel)
oPrior user eBPF failed by re-implementing entire stack
obpftime solution: Interpose on eBPF syscalls only

• Key design principles:
o Lightweight EIM enforcement
oConcealed extension entries: 10× faster uprobe

28



Contribution

• Extension Interface Model (EIM): Fine-grained capability control
• bpftime Runtime: Kernel-grade safety with library-grade 

performance

29



State-of-the-Art Falls Short

Approach Safety Isolation Efficiency Fine-Grained 
Control

Dynamic 
Loading ✗ ✗ ✓ ✗

SFI (Wasm, Lua) Limited ✓ ✗ (10-15% 
overhead) ✗

Subprocess ✓ ✓ ✗ (context 
switches) Limited

eBPF uprobes ✓ ✓ ✗ (kernel traps) Limited

• No single framework satisfies all requirements

30



Summary of EIM

• Existing frameworks → no control OR coarse-grained bundles
• Treats safety and interconnectedness as independent dimensions
• Example policies:

oMonitoring extension: read-only access to specific variables
oFirewall extension: read/write for response modification

31



bpftime - Why We Need a New Runtime

• Can't existing frameworks enforce EIM efficiently?
oWebAssembly/SFI: 10-15% overhead, Subprocess isolation: Expensive 

switches, Kernel eBPF uprobes: Kernel traps

• A userspace extension framework in eBPF
o Compatibility and Work together with kernel eBPF extensions
• verification for safety
oConceal for efficient
oMpk for isolation

32



eBPF application

eBPF
runtime

eBPF Program 
Source Code

eBPF compiler

eBPF bytecode

UbiBPF maps

UbiBPF Loader

verifier

JIT compiler

Target process
uprobe

tracepoint

syscall

kprobe

socket

libbpf

Userspace

Kernel

UbiBPF
user

runtime Syscall
tracepoint

verifier

JIT compiler

Syscall
Interposition

userspace
tracepoint

Binary
Rewriter

33



eBPF
runtime

bpftime maps

bpftime Loader

verifier

JIT compiler

Target process
User ext

Entry 

Kernel ext
Entry 

(kprobe...)

Userspace

Kernel

bpftime
runtime

verifier

JIT compiler

Syscall
Interposition

Binary
Rewriter

eBPF app

34



bpftime maps

bpftime Loader Target process
User ext

Entry 

Userspace

Kernel

bpftime
runtime

verifier

JIT compiler

Syscall
Interposition

Binary
Rewriter

eBPF app

eBPF
runtime

35



bpftime maps

bpftime Loader

Target process

Conceal
Entry 

(Uprobe..) 

Userspace

Kernel

bpftime
Runtime

(mpk)

verifier

JIT compiler

Syscall
Interposition

Binary
Rewriter

eBPF app

36



bpftime maps

bpftime Loader Target process
User ext

Entry 

Userspace

Kernel

bpftime
runtime

verifier

JIT compiler

Syscall
Interposition

Binary
Rewriter

eBPF app

37



bpftime Loader

Target process 

Conceal
Entry 

(Uprobe..) bpftime
Runtime

(mpk)

verifier

eBPF appTarget process 

38



bpftime Loader

Conceal
Entry 

(Uprobe..) bpftime
Runtime

(mpk)
verifier

eBPF app

Target process

39



Nginx firewall example
User wants to have a firewall to block malicious requests

User write custom firewall logic using nginx helper functions
Load their extension at an extension entry for request pr

Extension execution model: Thread → Extension entry → Jump to 
extension → Execute by extension runtime → Return to host

40



EIM: Extension Interface Model

• Solution to nav fine-grained 
safety-interconnectedness 
trade-offs

• Two-Phase Specification
oDevelopment-Time (by 

Developer)
oDeployment-Time (by 

Manager)

• Capabilities as Resources

41



EIM: Development-Time Specification

• Developers annotate code for capabilities
• Automatically extracted into capability manifest

42



EIM: Extension Interface Model

• Solution to nav fine-grained 
safety-interconnectedness 
trade-offs

• Two-Phase Specification
oDevelopment-Time (by 

Developer)
oDeployment-Time (by 

Manager)

• Capabilities as Resources

43



bpftime: userspace eBPF extension framework

• Challenge for 
compatibility and 
efficiency:
o eBPF: tightly coupled 

components
o Bpftime: Intercept 

syscalls & Share 
memory maps

44



Host Extension 
Runtime

Entry Extension

45



Host Extension 
Runtime

Entry Extension

46



Host Extension 
Runtime

Entry Extension

Safety 
violation

Performance 
penalty

47



Host Extension 
Runtime

Entry Extension

fine-grained safety and 
interconnectedness trade-offs efficiency

Isolation

48



Host

Entry

Stage 1: Development

Development time
EIM Spec

Host

Entry

Development time
EIM Spec

Extension Runtime
Extension

Stage 2: Deployment

Deployment time
EIM Spec

writes

49



Process

Host Bpftime
Runtime

Entry Extension

bpftime Loader

verifier

eBPF app

Execution extensi
on runtime in the 
same process for 

efficiency

Compatible 
with eBPF

EIM: no 
runtime 

cost

Conceal extension 
entry for efficiency: 

using binary rewriting 
to remove unused 
extension entries

Hardware features for 
efficient isolation

50



bpftime: userspace eBPF extension framework
Provide efficient 
solution to enforce EIM and 
isolation

o Verification: EIM: no runtime 
cost

o Execution extension 
runtime in thesame process 
forefficiency

o Conceal extension entry for 
efficiency: using binary 
rewriting to remove unused 
extension entries

o Hardware features for 
efficient isolation

o Compatibility
o Interact with kernel

51



EIM: Development-Time Specification

• Developers annotate code for capabilities
• Automatically extracted into capability manifest

52



EIM: Deployment-Time Specification
• Extension Manager write 

simple YAML policies to 
explore 
interconnectedness/safety 
trade-offs without recompiling

53



contribution

• Background & motivation: Extensions
• Extension Interface Model (EIM): Fine-grained Interface
• bpftime Runtime: safety & performance
• Evaluation
• ….. add more and make it a contribution

Q & A?
• GitHub repo: https://github.com/eunomia-bpf/bpftime
• Get started:

54

https://github.com/eunomia-bpf/bpftime
https://github.com/eunomia-bpf/bpftime
https://github.com/eunomia-bpf/bpftime


Contribution

• Extension Interface Model (EIM): 
Solution to navigate fine-grained 
safety-interconnectedness trade-
off & Two-Phase Specification: 
Development-Time (by Developer) 
Deployment-Time (by Manager)

• bpftime Runtime: An 
userspace eBPF runtime 
implemented EIM with 
isolation and efficiency

• Evaluation: 6 usecases and Up to 6x less overhead

55



Nginx firewall example
Offline:
• Writes custom firewall logic using 

nginx helper functions
• Loads their extension at an extension 

entry for request processing
At runtime
• Nginx jumps to the extension runtime 

when reaches the extension entry
• Extension runtime execute the 

extension entry and return to Nginx

Nginx Extension 
Runtime

Entry Firewall

56



Six Real-World Use Cases

• Nginx Firewall
• Redis Durability
• FUSE Metadata Cache
• DeepFlow
• Syscount
• Sslsniff
(grounp and figture?)
GitHub: https://github.com/eunomia-bpf/bpftime

57

https://github.com/eunomia-bpf/bpftime
https://github.com/eunomia-bpf/bpftime
https://github.com/eunomia-bpf/bpftime


Extension Problems

• Real-world safety violations:
Bilibili CDN outage, Apache 
buffer overflow, Redis RCE
• Performance penalty: 

WebAssembly/Lua impose 10-
15% overhead

Host Extension 
Runtime

Entry Extension

Safety 
violation

Performance 
penalty

58



contribution

• Background & motivation: Extensions
• Extension Interface Model (EIM): Fine-grained Interface
• bpftime Runtime: safety & performance
• Evaluation
• ….. add more and make it a contribution

Q & A?
• GitHub repo: https://github.com/eunomia-bpf/bpftime
• Get started:

59

https://github.com/eunomia-bpf/bpftime
https://github.com/eunomia-bpf/bpftime
https://github.com/eunomia-bpf/bpftime


EIM: Extension Interface Model
• Goal: enable fine-grained safety/interconnectedness trade-offs
• Challenge: supporting per deployment tradeoffs
• Solution: 

o Two-Phase Specification (Development-Time and deployment-Time)
oModel all resources as capabilities

Host

During Development

Development time
EIM Spec

Entry

Before Deployment

Development time
EIM Spec

Entry

Entry

At Deployment/Runtime

Extension

Extension 
Runtime

60



Contributions

• Extension Interface Model (EIM) • bpftime

• Up to 6x less overhead than current state-of-the-art!

61



Contributions

• Up to 6x less overhead than current state-of-the-art!

62

Extension Interface model (EIM) Bpftime runtime

Navigate fine-grained 
safety/interconectedness trade-offs for 

extensions

Efficient support for EIM and isolation through 
userspace eBPF runtime

Development 
time Spec
Developer

Deployment 
time Spec
Manager

Two phase Specification

Isolation Efficiency



Host Application

EIM: Extension Interface Model
• Goal: enable fine-grained safety/interconnectedness trade-offs
• Challenge: supporting per deployment tradeoffs
• Solution: 

o Two-Phase Specification (Development-Time and deployment-Time)
oModel all resources as capabilities

1. During Development

Deployment
time

EIM Spec

2. Before Deployment

Development time
EIM Spec

Entry

Entry

3. At Deployment/Runtime

Extension

Extension 
Runtime

Extension
Manager

App 
Developer

Writes
Writes Verify Extension

Dev Spec

Deploy 
Spec



Extension Requirements
• Fine-grained 

safety and 
interconnected
ness trade-offs

• Isolation:
• Efficiency:

Host Extension 
Runtime

Entry Extension

fine-grained 
safety/interconn

ectedness 
tradeoffs efficiency

64

Isolation



Host Application

EIM: Extension Interface Model
• Goal: enable fine-grained safety/interconnectedness trade-offs
• Challenge: supporting per deployment tradeoffs
• Solution: 

o Two-Phase Specification (Development-Time and deployment-Time)
oModel all resources as capabilities

1. During Development

Deployment
time

EIM Spec

2. Before Deployment

Development time
EIM Spec

Entry

Entry

3. At Deployment/Runtime

Extension 
Runtime

Extension
Manager

App 
Developer

Writes
Writes Verify Extension

Deploy 
Spec



Extension Problems & requirements
Real-world safety 
violations:
• Bilibili CDN outage, Apache 

buffer overflow, Redis RCE
Performance penalty: 
• WebAssembly/Lua impose 10-

15% overhead
Requirements:
• Fine-grained safety and 

interconnectedness trade-offs
• Isolation
• Efficiency

66

Host Extension 
Runtime

Entry Extension

Safety 
violation

Performance 
penalty efficiency

Isolationfine-grained 
safety/interconnected

ness 
tradeoffs


	幻灯片 1: Extending Applications Safely and Efficiently
	幻灯片 2: Extensions are everywhere
	幻灯片 3: Nginx firewall example
	幻灯片 4: Extension Problems & requirements
	幻灯片 5: State-of-the-Art Falls Short
	幻灯片 6: Contributions
	幻灯片 7: Outline
	幻灯片 8: EIM: Extension Interface Model
	幻灯片 9: EIM: Development Time Specification
	幻灯片 10: EIM: Deployment Time Specification
	幻灯片 11: Outline
	幻灯片 12: bpftime: userspace eBPF extension framework 
	幻灯片 13: Outline
	幻灯片 14: Six Real-World Use Cases
	幻灯片 15: Customization: Nginx firewall
	幻灯片 16: Observability: sslsniff
	幻灯片 17: Contributions
	幻灯片 18
	幻灯片 19: Backup
	幻灯片 20: Customization: Nginx firewall
	幻灯片 21: Observability: sslsniff
	幻灯片 22: Four Roles in an Extension Ecosystem
	幻灯片 23: Micro-Benchmark
	幻灯片 24: Extensions have issues
	幻灯片 25: Nginx example
	幻灯片 26: Get started
	幻灯片 27: Loader & Runtime Workflow
	幻灯片 28: Efficient Safety & Isolation
	幻灯片 29: Contribution
	幻灯片 30: State-of-the-Art Falls Short
	幻灯片 31: Summary of EIM
	幻灯片 32: bpftime - Why We Need a New Runtime 
	幻灯片 33
	幻灯片 34
	幻灯片 35
	幻灯片 36
	幻灯片 37
	幻灯片 38
	幻灯片 39
	幻灯片 40: Nginx firewall example
	幻灯片 41: EIM: Extension Interface Model
	幻灯片 42: EIM: Development-Time Specification
	幻灯片 43: EIM: Extension Interface Model
	幻灯片 44: bpftime: userspace eBPF extension framework 
	幻灯片 45
	幻灯片 46
	幻灯片 47
	幻灯片 48
	幻灯片 49
	幻灯片 50
	幻灯片 51: bpftime: userspace eBPF extension framework 
	幻灯片 52: EIM: Development-Time Specification
	幻灯片 53: EIM: Deployment-Time Specification
	幻灯片 54: contribution
	幻灯片 55: Contribution
	幻灯片 56: Nginx firewall example
	幻灯片 57: Six Real-World Use Cases
	幻灯片 58: Extension Problems
	幻灯片 59: contribution
	幻灯片 60: EIM: Extension Interface Model
	幻灯片 61: Contributions
	幻灯片 62: Contributions
	幻灯片 63: EIM: Extension Interface Model
	幻灯片 64: Extension Requirements
	幻灯片 65: EIM: Extension Interface Model
	幻灯片 66: Extension Problems & requirements

