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Extensions are everywhere

What are extensions?
• Customize software without 

modifying source code
Why do we need them?
• Different deployments, different 

needs
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Nginx firewall example
Before deployment, user:
• Writes firewall using nginx APIs
• Associates firewall with request 

processing extension entry.
During runtime, Nginx:
• Jumps to firewall when reaching 

request processing entry.
• Executes firewall in the extension 

runtime execution context.

Nginx Extension 
Runtime

Entry Firewall
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Extension Problems & requirements
Real-world safety 
violations:
• Bilibili CDN outage, Apache 

buffer overflow, Redis RCE
Performance penalty: 
• WebAssembly/Lua impose 10-

15% overhead
Requirements:
• Fine-grained safety and 

interconnectedness trade-offs
• Isolation
• Efficiency
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State-of-the-Art Falls Short

o Dynamic loading: efficiency but no isolation or fine-
grained safety-interconnectedness policies (LD_PRELOAD, DBI tools)

o Software Fault Isolation: safety with 10–15 % performance 
penalty (XFI [OSDI 06], NaCL [SOSP 09], RL-Box [USENIX Security 20], Wasm and Lua)

o Subprocess: strong isolation but high IPC overhead （Wedge 
[NSDI 08], Shreds [IEEE SP 16], lwC [OSDI 16], and Orbit [OSDI 22])

o Kernel eBPF uprobes: isolation at micro second-level 
trap cost, low efficiency
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Contributions

• Up to 6x less overhead than current state-of-the-art!
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Extension Interface 
model (EIM) Bpftime runtime

Navigate fine-grained 
safety/interconectedness trade-offs for 

extensions

Efficient support for EIM and isolation 
through userspace eBPF runtime



Outline

• Background & motivation: Extensions
• → Extension Interface Model (EIM): Fine-grained Interface
• bpftime Runtime: safety & performance
• Evaluation
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Host Application

EIM: Extension Interface Model
• Goal: enable fine-grained safety/interconnectedness trade-offs
• Challenge: supporting per deployment tradeoffs
• Solution: 

o Two-phase specification (Development Time and Deployment Time)
oModel all resources as capabilities

1. During Development

Deployment
time

EIM Spec

2. Before Deployment

Development time
EIM Spec

Entry

Entry

At Deployment/Runtime

Extension 
Runtime

Extension
Manager

App 
Developer

Writes
Writes

Verify

Extension



EIM: Development Time Specification

• Developers annotate code for capabilities
• Automatically extracted into capability manifest
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EIM: Deployment Time Specification
• YAML policies specify 

safety/interconnectedness tra
deoffs

• Compact policies (avg of 30 
lines in evaluation).
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Outline

• → Background & motivation: Extensions
• Extension Interface Model (EIM): Fine-grained Interface
• → bpftime Runtime: safety & performance
• Evaluation
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bpftime: userspace eBPF extension framework

Process

Host bpftime
Runtime

Entry Extension

bpftime Loader

verifier eBPF app

Intra-process 
extensions for 

efficiency

Compatible 
with eBPF

Verification 
for efficient
EIM support

Hardware features for 
efficient isolation
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• Goal: efficiently support EIM and isolation
• Challenge: Existing extension runtimes use heavyweight safety 

& isolation techniques
• Solution: 

o build new design that exploits eBPF-style verification, binary rewriting, and 
hardware features to enable efficient intra-process extensions

Concealed extension 
entries use binary 
rewriting for efficiency



Outline

• Background & motivation: Extensions
• Extension Interface Model (EIM): Fine-grained Interface
• bpftime Runtime: safety & performance
• → Evaluation
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Six Real-World Use Cases

Customization
• Nginx Firewall
• Redis Durability
• FUSE Metadata Cache

Observability
• DeepFlow
• Syscount
• Sslsniff
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Customization: Nginx firewall

• 5× to 6× less overhead 
than lua or 
WebAssembly

better
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Observability: sslsniff

• Maximum 21% 
less overhead 
than kernel eBPF

better
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Contributions

• Up to 6x less overhead than current state-of-the-art!
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Extension Interface model (EIM) Bpftime runtime

Navigate fine-grained 
safety/interconectedness trade-offs for 

extensions

Efficient support for EIM and isolation through 
userspace eBPF runtime

Questions?
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Backup
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Customization: Nginx firewall

• 5× to 6× improvement
• Less is better
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Observability: sslsniff

• 21% less 
overhead than 
kernel eBPF
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Four Roles in an Extension Ecosystem
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Micro-Benchmark

Compare with eBPF:
• Uprobe Dispatch: 2.56 µs → 190 ns (14× faster)
• Syscall Tracepoint: 151 ns → 232 ns (1.5× slower)
• Memory access (Table 3): user-space read/write 2 ns vs 20 ns 

(10× faster)
• Overall: average 1.5× faster than ubpf/rbpf (Figure 11)
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Extensions have issues

• Example issues caused by extension safety violations

• The performance penalty of existing approaches
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Nginx example

• ddd
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Get started
• Use uprobe to monitor 

userspace malloc 
function

• Try eBPF in GitHub 
codespace!(Unprivilidge
d container)
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Loader & Runtime Workflow

• Intercept standard eBPF syscalls from libbpf/bcc.
• Parse EIM manifests and DWARF/BTF to generate constraints.
• Verify byte-code via kernel’s eBPF verifier with added assertions.
• JIT-Compile verified byte-code into native x86.
• Inject user-runtime via ptrace + Frida + Capstone trampolines.
• Execute extension: flip MPK key → jump to code → flip back → 

resume.
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Efficient Safety & Isolation

• The eBPF compatibility challenge:
oLinux eBPF has tightly coupled components (compilers, runtime, kernel)
oPrior user eBPF failed by re-implementing entire stack
obpftime solution: Interpose on eBPF syscalls only

• Key design principles:
o Lightweight EIM enforcement
oConcealed extension entries: 10× faster uprobe
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Contribution

• Extension Interface Model (EIM): Fine-grained capability control
• bpftime Runtime: Kernel-grade safety with library-grade 

performance
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State-of-the-Art Falls Short

Approach Safety Isolation Efficiency Fine-Grained 
Control

Dynamic 
Loading ✗ ✗ ✓ ✗

SFI (Wasm, Lua) Limited ✓ ✗ (10-15% 
overhead) ✗

Subprocess ✓ ✓ ✗ (context 
switches) Limited

eBPF uprobes ✓ ✓ ✗ (kernel traps) Limited

• No single framework satisfies all requirements
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Summary of EIM

• Existing frameworks → no control OR coarse-grained bundles
• Treats safety and interconnectedness as independent dimensions
• Example policies:

oMonitoring extension: read-only access to specific variables
oFirewall extension: read/write for response modification
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bpftime - Why We Need a New Runtime

• Can't existing frameworks enforce EIM efficiently?
oWebAssembly/SFI: 10-15% overhead, Subprocess isolation: Expensive 

switches, Kernel eBPF uprobes: Kernel traps

• A userspace extension framework in eBPF
o Compatibility and Work together with kernel eBPF extensions
• verification for safety
oConceal for efficient
oMpk for isolation
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eBPF application
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eBPF
runtime
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bpftime maps
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bpftime maps
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bpftime maps
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bpftime Loader
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Nginx firewall example
User wants to have a firewall to block malicious requests

User write custom firewall logic using nginx helper functions
Load their extension at an extension entry for request pr

Extension execution model: Thread → Extension entry → Jump to 
extension → Execute by extension runtime → Return to host
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EIM: Extension Interface Model

• Solution to nav fine-grained 
safety-interconnectedness 
trade-offs

• Two-Phase Specification
oDevelopment-Time (by 

Developer)
oDeployment-Time (by 

Manager)

• Capabilities as Resources
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EIM: Development-Time Specification

• Developers annotate code for capabilities
• Automatically extracted into capability manifest
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EIM: Extension Interface Model

• Solution to nav fine-grained 
safety-interconnectedness 
trade-offs

• Two-Phase Specification
oDevelopment-Time (by 

Developer)
oDeployment-Time (by 

Manager)

• Capabilities as Resources
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bpftime: userspace eBPF extension framework

• Challenge for 
compatibility and 
efficiency:
o eBPF: tightly coupled 

components
o Bpftime: Intercept 

syscalls & Share 
memory maps
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Host Extension 
Runtime

Entry Extension
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Host Extension 
Runtime

Entry Extension
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Host Extension 
Runtime

Entry Extension

Safety 
violation

Performance 
penalty
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Host Extension 
Runtime

Entry Extension

fine-grained safety and 
interconnectedness trade-offs efficiency

Isolation
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Host

Entry

Stage 1: Development

Development time
EIM Spec

Host

Entry

Development time
EIM Spec

Extension Runtime
Extension

Stage 2: Deployment

Deployment time
EIM Spec

writes
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Process

Host Bpftime
Runtime

Entry Extension

bpftime Loader

verifier

eBPF app

Execution extensi
on runtime in the 
same process for 

efficiency

Compatible 
with eBPF

EIM: no 
runtime 

cost

Conceal extension 
entry for efficiency: 

using binary rewriting 
to remove unused 
extension entries

Hardware features for 
efficient isolation
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bpftime: userspace eBPF extension framework
Provide efficient 
solution to enforce EIM and 
isolation

o Verification: EIM: no runtime 
cost

o Execution extension 
runtime in thesame process 
forefficiency

o Conceal extension entry for 
efficiency: using binary 
rewriting to remove unused 
extension entries

o Hardware features for 
efficient isolation

o Compatibility
o Interact with kernel
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EIM: Development-Time Specification

• Developers annotate code for capabilities
• Automatically extracted into capability manifest
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EIM: Deployment-Time Specification
• Extension Manager write 

simple YAML policies to 
explore 
interconnectedness/safety 
trade-offs without recompiling
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contribution

• Background & motivation: Extensions
• Extension Interface Model (EIM): Fine-grained Interface
• bpftime Runtime: safety & performance
• Evaluation
• ….. add more and make it a contribution

Q & A?
• GitHub repo: https://github.com/eunomia-bpf/bpftime
• Get started:
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Contribution

• Extension Interface Model (EIM): 
Solution to navigate fine-grained 
safety-interconnectedness trade-
off & Two-Phase Specification: 
Development-Time (by Developer) 
Deployment-Time (by Manager)

• bpftime Runtime: An 
userspace eBPF runtime 
implemented EIM with 
isolation and efficiency

• Evaluation: 6 usecases and Up to 6x less overhead
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Nginx firewall example
Offline:
• Writes custom firewall logic using 

nginx helper functions
• Loads their extension at an extension 

entry for request processing
At runtime
• Nginx jumps to the extension runtime 

when reaches the extension entry
• Extension runtime execute the 

extension entry and return to Nginx

Nginx Extension 
Runtime

Entry Firewall
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Six Real-World Use Cases

• Nginx Firewall
• Redis Durability
• FUSE Metadata Cache
• DeepFlow
• Syscount
• Sslsniff
(grounp and figture?)
GitHub: https://github.com/eunomia-bpf/bpftime
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Extension Problems

• Real-world safety violations:
Bilibili CDN outage, Apache 
buffer overflow, Redis RCE
• Performance penalty: 

WebAssembly/Lua impose 10-
15% overhead

Host Extension 
Runtime

Entry Extension

Safety 
violation

Performance 
penalty
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contribution

• Background & motivation: Extensions
• Extension Interface Model (EIM): Fine-grained Interface
• bpftime Runtime: safety & performance
• Evaluation
• ….. add more and make it a contribution

Q & A?
• GitHub repo: https://github.com/eunomia-bpf/bpftime
• Get started:
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EIM: Extension Interface Model
• Goal: enable fine-grained safety/interconnectedness trade-offs
• Challenge: supporting per deployment tradeoffs
• Solution: 

o Two-Phase Specification (Development-Time and deployment-Time)
oModel all resources as capabilities

Host

During Development

Development time
EIM Spec

Entry

Before Deployment

Development time
EIM Spec

Entry

Entry

At Deployment/Runtime

Extension

Extension 
Runtime
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Contributions

• Extension Interface Model (EIM) • bpftime

• Up to 6x less overhead than current state-of-the-art!
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Contributions

• Up to 6x less overhead than current state-of-the-art!
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Extension Interface model (EIM) Bpftime runtime

Navigate fine-grained 
safety/interconectedness trade-offs for 

extensions

Efficient support for EIM and isolation through 
userspace eBPF runtime
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Host Application

EIM: Extension Interface Model
• Goal: enable fine-grained safety/interconnectedness trade-offs
• Challenge: supporting per deployment tradeoffs
• Solution: 

o Two-Phase Specification (Development-Time and deployment-Time)
oModel all resources as capabilities

1. During Development

Deployment
time

EIM Spec

2. Before Deployment

Development time
EIM Spec

Entry

Entry

3. At Deployment/Runtime

Extension

Extension 
Runtime

Extension
Manager

App 
Developer

Writes
Writes Verify Extension

Dev Spec

Deploy 
Spec



Extension Requirements
• Fine-grained 

safety and 
interconnected
ness trade-offs

• Isolation:
• Efficiency:

Host Extension 
Runtime

Entry Extension

fine-grained 
safety/interconn

ectedness 
tradeoffs efficiency
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Host Application

EIM: Extension Interface Model
• Goal: enable fine-grained safety/interconnectedness trade-offs
• Challenge: supporting per deployment tradeoffs
• Solution: 

o Two-Phase Specification (Development-Time and deployment-Time)
oModel all resources as capabilities

1. During Development

Deployment
time

EIM Spec

2. Before Deployment

Development time
EIM Spec

Entry

Entry

3. At Deployment/Runtime

Extension 
Runtime

Extension
Manager

App 
Developer

Writes
Writes Verify Extension

Deploy 
Spec



Extension Problems & requirements
Real-world safety 
violations:
• Bilibili CDN outage, Apache 

buffer overflow, Redis RCE
Performance penalty: 
• WebAssembly/Lua impose 10-

15% overhead
Requirements:
• Fine-grained safety and 

interconnectedness trade-offs
• Isolation
• Efficiency
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