ARTIFACT ARTIFACT ARTIFACT

EVALUATED EVALUATED EVALUATED
rusenix rusenix Fusenix
é" ASSOCIATION ' ASSOCIATION é" ASSOCIATION

AVAILABLE REPRODUCED

Extending Applications
Safely and Efficiently

Yusheng Zheng' » Tong Yu® * Yiwei Yang' * Yanpeng Hu®

Xiaozheng Lai* ¢ Dan Williams® ¢ Andi Quinn'

'UC SantaCruz “eunomia-bpf Community 3ShanghaiTech University

*South China University of Technology °Virginia Tech

Extensions are everywhere

: Customize software without
, Postais modifying source code

. Why do we need them?
PostgreSQL {\ plugin lJ

— Different deployments, different
needs
@: [T

Redis ad blockers

What are extensions?

Nginx firewall example

Before deployment, user:
* Writes firewall using nginx APls

* Associates firewall with request
processing extension entry.

During runtime, Nginx:

* Jumps to firewall when reaching
request processing entry.

e Executes firewall in the extension
runtime execution context.

-

N

A%

1 . 1
FIREWALL BAtgﬁgER MONITORING
_ J . J - J
Nginx Extension
Runtime
Entry % N Firewall

Extension Problems & requirements

Real-world safety
violations:

* Bilibili CDN outage, Apache
buffer overflow, Redis RCE

Performance penalty:

* WebAssembly/Lua impose 10-
15% overhead

Requirements:

* Fine-grained safety and
interconnectedness trade-offs

* |solation
* Efficiency

Efficiency
(Performance
penalty)

\/

Host

Entry

<

Extension
Runtime

Extension

ness
tradeoffs (Safety

_ violation)

4 fine—grailgj\

safety/interconnected

J

[Isolation (Safetm

State-of-the-Art Falls Short

o Dynamic loading: efficiency but no isolation or fine-
grained safety-interconnectedness policies (Lb_PRELOAD, DBl tools)

o Software Fault Isolation: safety with 10-15 % performance

pena lty (XFI [OSDI 06], NaCL [SOSP 09], RL-Box [USENIX Security 20], Wasm and Lua)

o Subprocess: strong isolation but high IPC overhead (wedge
[NSDI 08], Shreds [IEEE SP 16], lwC [OSDI 16], and Orbit [OSDI 22])

o Kernel eBPF uprobes:isolation at micro second-level
trap cost, low efficiency

Contributions

4) 4)
Extension Interface Bofti .
el (ElM) P time runtime
\\ / \ /
Navigate fine-grained Efficient support for EIM and isolation
safety/interconectedness trade-offs for through userspace eBPF runtime
extensions

* Upto6xless overheadthan current state-of-the-art!

Outline

* Background & motivation: Extensions

* > Extension Interface Model (EIM): Fine-grained Interface
* bpftime Runtime: safety & performance

* Evaluation

EIM: Extension Interface Model

* Goal: enable fine-grained safety/interconnectedness trade-offs

* Challenge: supporting per deployment tradeoffs

* Solution:
o Two-phase specification (Development Time and Deployment Time)

o Model all resources as capabilities

Host Application

@ Development time
, EIM Spec
Writes
- Entry
App
Developer Entry

1. During Development

» ~ Writes

Extension
Manager

Extension

Deployment
time
EIM Spec

@ Verify

Extension
Runtime

2. Before Deployment

At Deployment/Runtime

EIM: Development Time Specification

* Developers annotate code for capabilities

 Automatically extracted into capability manifest

Host Application

@ Development time

Writes

EIM Spec

—

Entry

App
Developer

Entry

1. During Development

EIM STATE DEFINE(readPid, read, ngx_pid);
EIM HFUNC_DEFINE_WITH CONSTRAINTS(

nginxTime,

HF_RET_POSITIVE);
EIM_EXTENSION_ENTRY_DEFINE(

processBegin,

ngx_http_process_request,

’

struct Request *);

EIM: Deployment Time Specification

* YAML policies specify
safety/interconnectedness tra
deoffs

* Compact policies (avg of 30

. . . Deployment
lines in evaluation). M wited time
| Extension Class (- EIM Spec
2 name = "observeProcessBegin", Extension
3 extension_entry = "processBegin", h4anager
4 allowed = {1nstructions<inf, nginxTime,

readPid, read(r)})
s Extension Class |
6 name = "updateResponse",

2. Before Deployment

7 extension_entry = "updateResponseContent"
8 allowed = {instructions<inf, read(r),
write(r)})

10

Outline

* > Background & motivation: Extensions

* Extension Interface Model (EIM): Fine-grained Interface
* > bpftime Runtime: safety & performance

* Evaluation

11

bpftime: userspace eBPF extension framework

* Goal: efficiently support EIM and isolation

* Challenge: Existing extension runtimes use heavyweight safety
& isolation techniques

e Solution:

o build new design that exploits eBPF-style verification, binary rewriting, and
hardware features to enable efficient intra-process extensions

Intra-process J

extensions for

efficienc PFf A At
= Y (Hardware features for Verlflc.:a"uon
.)) for efficient
Process efficient isolation EIM
Support Compatible
Concealed extension Host bpftime . with eBPF
entries use binary Runtime bpftime Loader
rewriting for efficiencyf> Entry || Extension [¢r— verifier) eBPF app
12

Outline

* Background & motivation: Extensions

* Extension Interface Model (EIM): Fine-grained Interface
* bpftime Runtime: safety & performance

* > Evaluation

13

Six Real-World Use Cases

] bpftime | Public

Userspace eBPF runtime for Observability, Network, GPU & Genera
Extensions Framewor k

@®c++ vrik %99

GitHub: https://github.com/eunomia-bpf/bpftime

Customization Observability
* Nginx Firewall * DeepFlow
» Redis Durability * Syscount

* Sslsniff

* FUSE Metadata Cache

https://github.com/eunomia-bpf/bpftime
https://github.com/eunomia-bpf/bpftime
https://github.com/eunomia-bpf/bpftime

Customization: Nginx firewall

e 5x to 6% less overhead

than lua or
WebAssembly

better

AN

5000
P 4500
< 4000
©

C 3500
S 3000
9 2500
g 2000
(73]

% 1500
© 1000
2 500
oc

15

Observability: sslsniff

better 14000

» 12000
N\ &
-g 10000
e Maximum 21% S 8000
less overhead % 000
than kernel eBPF 2
© 4000
§ 2000
0

1K

B Kernel Uprobe

B bpftime

mmm e N
256K

B Native

16

Contributions Questions?

{ Extension Interface model (EIM) J [Bpftime runtime J
Navigate fine-grained Efficient support for EIM and isolation through
safety/interconectedness trade-offs for userspace eBPF runtime
extensions

* Upto6xless overheadthan current state-of-the-art!

bpftime load ./example/malloc/malloc

bpftime start nginx -c ./nginx.conf

17

18

Backup

Customization: Nginx firewall

* 5x t0 6% improvement

e Lessis better

Lua

WebAssembly

ERIM

RLBox

bpftime
Baseline C

Native

3982
4007
4024
4148
4461
4559
4536

0

1,000

2,000 3,000 4,000

Requests per Second (RPS)

5,000

20

Observability: sslsniff

e 21% less
overhead than
kernel eBPF

12000

10000 -

8000 1

6000 -

Requests/sec

4000 -

2000 1

Kernel Uprobe
bpftime
Native

1K

2K

4K 16K 128K 256K
Data Size

21

Four Roles in an Extension Ecosystem

What extensions
should be allowed?

Host Application
uses _
Q — Entry 1 ¢ : ? extl | Extension
User Entry 2 & Y ext2 Program
writesT writes
Application Extension

Developer(s) Developer(s)

Micro-Benchmark

Compare with eBPF:
* Uprobe Dispatch: 2.56 ps > 190 ns (14 x faster)
* Syscall Tracepoint: 151 ns > 232 ns (1.5x slower)

* Memory access (Table 3): user-space read/write 2 nsvs 20 ns
(10x faster)

* Overall: average 1.5x faster than ubpf/rbpf (Figure 11)

23

Extensions have issues

* Example issues caused by extension safety violations

Bug Software ~ Summary

Bilibili [73] Nginx Livelock (infinite loop) in an ex-
tension caused production out-
age.

CVE-2021-44790 [47] Apache Buffer overflow in httpd’s lua
module causes application to
crash.

CVE-2024-31449 [42] Redis Stack overflow in Lua script
leads to arbitrary remote code
execution.

* The performance penalty of existing approaches

24

Nginx example

°d

What extensions

should be allowed?

Extension
Mangerl
Host Application : Extension Runtime :
uses _ e
Q —> Entry 1 & > extl | Extension
User Entry 2 & Y ext2 Program
writesT writes
Application Extension
Developer(s) Developer(s)

25

PR i,

To get started, you can build and run a libbpf based eBPF program
starts with bpftime cli:

make -C example/malloc # Build the eBPF program example d;

Get started cxport PATH=SPATH: -/ bpfine/

bpftime load ./example/malloc/malloc

e Use uprobe to monitor

In another shell, Run the target program with eBPF inside:
userspace malloc

function -
. . $ bpftime start ./example/malloc/victim G
* Try eBPF in GitHub S e r
COdeSpace!(Unp“‘”hdge malloc called from pid 250215
d COntalner) continue malloc...

malloc called from pid 250215

Loader & Runtime Workflow

* Intercept standard eBPF syscalls from libbpf/bcc.

* Parse EIM manifests and DWARF/BTF to generate constraints.

* Verify byte-code via kernel’s eBPF verifier with added assertions.
* JIT-Compile verified byte-code into native x86.

* Inject user-runtime via ptrace + Frida + Capstone trampolines.

* Execute extension: flip MPK key > jump to code - flip back >
resume.

27

Efficient Safety & Isolation

* The eBPF compatibility challenge:
o Linux eBPF has tightly coupled components (compilers, runtime, kernel)
o Prior user eBPF failed by re-implementing entire stack
o bpftime solution: Interpose on eBPF syscalls only

* Key design principles:
o Lightweight EIM enforcement
o Concealed extension entries: 10x faster uprobe

28

Contribution

 Extension Interface Model (EIM): Fine-grained capability control

* bpftime Runtime: Kernel-grade safety with library-grade
performance

29

State-of-the-Art Falls Short

. - Fine-Grained
Approach Safety Isolation Efficiency Control
Dynamic
v
Loading X X X
SFI (Wasm, Lua) | Limited y X (10-15% X
’ overhead)
Subprocess v v X(.context Limited
switches)
eBPF uprobes v v X (kerneltraps) | Limited

* No single framework satisfies all requirements

30

Summary of EIM

* Existing frameworks > no control OR coarse-grained bundles
* Treats safety and interconnectedness as independent dimensions

* Example policies:
o Monitoring extension: read-only access to specific variables
o Firewall extension: read/write for response modification

31

bpftime - Why We Need a New Runtime

* Can't existing frameworks enforce EIM efficiently?

o WebAssembly/SFIl: 10-15% overhead, Subprocess isolation: Expensive
switches, Kernel eBPF uprobes: Kernel traps

* A userspace extension framework in eBPF
o Compatibility and Work together with kernel eBPF extensions
* verification for safety

o Conceal for efficient
o Mpk for isolation

32

UIBPF Loader Target process -

. Binar F(_ uprobe B
eBPF Program eBPF application Rewritizr J\ UbiBPF userspace
Source Code \ user | ¥ Ltracepoint J

3 eBPF bytecode IR . R -
[JIT compiler | runtime | 4 ysealt e
[eBPF compiler libbpf 4 acepoint/
| verifier | l
Userspace 5 A . .
——————————————— ysca <) : syscall —_—-
Interposition }/ UbiBPF maps (4 /
Kernel

(verifier J 6

A 4

[JIT compiler]———P eBEF
runtime

tracepoint

kprobe

o NN

socket

33

bpftime Loader

Target process

Binary
Rewriter

L} _—T

eBPF app [JIT compiler |7

bpftime
runtime

[verifier]

Userspace

[}
Syscall
Interposition

Kernel

4

bpftime maps

8

User ext
Entry

(verjier J

[JIT compiler]———>

eBPF
runtime

A

Kernel ext
Entry
(kprobe...)

34

eBPF app

Userspace

Kernel

bpftime Loader

Target process

Binary User ext
Revx:iter / bpftime > 4 Entry
runtime
[JIT compiler |

[verifier]

A
Syscall
Interposition }/

{

eBPF
runtime

35

eBPF app

Userspace

Kernel

bpftime Loader\

Binary
Rewriter

4
[JIT compiler |

[verifier]

A
Syscall
Interposition }/

Runtime

bpftime maps

bpftime |&

Conceal
Entry
(Uprobe..)

(mpk) | Target process

36

eBPF app

Userspace

Kernel

bpftime Loader

Binary
Rewriter

[}

[

JIT compiler |

[

verifier]

A
Syscall
Interposition }/

4

bpftime
runtime

bpftime maps

Target process

User ext
Entry

37

Target process

Host (Nginx) . Extension Runtime :
T
Entry 1 & : » extl | Extension
Entry 2 ¥ ext2| (modules)
AN
Conceal
. Entry
bpftime |&| (Uprobe..)
Runtime
(mpk) Target process

eBPF app

\

bpftime Loader

<:> [verifier |

38

eBPF app

\

bpftime Loader

[verifier

)

Target process

-

39

Nginx firewall example

User wants to have a firewall to block malicious requests

User write custom firewall logic using nginx helper functions
Load their extension at an extension entry for request pr

Extension execution model: Thread »> Extension entry > Jump to
extension > Execute by extension runtime > Return to host

Host (Nginx) . Extension Runtime §

EIM: Extension Interface Model

* Solution to nav fine-grained
safety-interconnectedness What exiencior
tra d e-0 ff S should be allowed?

* Two-Phase Specification
o Development-Time (by

Develo pe r) Host Application
o Deployment-Time (by = oy LK 7L Bxtension
SEr Vi AN rogram
Manager) Y 2RS U]
epey e writesT writes
* Capabilities as Resources @ o
Application Extension

Developer(s) Developer(s)

EIM: Development-Time Specification

* Developers annotate code for capabilities
 Automatically extracted into capability manifest

EIM STATE DEFINE(readPid, read, ngx pid);
EIM_HFUNC_DEFINE_WITH_CONSTRAINTS(

Host Application Extension Runtime : nginxTime,
Entry 1 & (> extl | Extension HF_RET_POSITIVE);
Entry 2 & Ek}eMQ Program ; EIM_EXTENSION_ENTRY_DEFINE (
WriteST “;l.hl.tes processBeginJ
Q Q ngx_http process request,
Application Extension ’
Developer(s) Developer(s)

Request *);

EIM: Extension Interface Model

e Solution to nav fine-
safety-interconnect \

trade-offs
. ce should be alloweds
« Two-Phase Specific '
o Development-Time S
Developer) @
o Deployment-Time (I \Extension
Manager) = — Manger ,.........ccoiieiiiinnnne, .
—_ Host Application | : Extension Runtime :
* Capabilities as Resc @ _ujes Entry 1K Aol] Feencon)

User Entry 2 | 3 ext2 Program

wri tesT P \ S
) 43
e o |

bpftime: userspace eBPF extension framework

] 1
Challenge for I/QQItNng Loader\ Conceal
ey eqe 5 Entry
compatibility and _[ey] bpftime 2| (Uprobe.)
A : 3 Runtime
:fﬂ;:IIB?DI;Ft)i/ghtly coupled SPFepe | | LA i] G R &
° .f.
components Userspace [;e“*'elrl) M
o Bpftime: Intercept -=== L|nt%0njj ‘-’ ------
syscalls & Share Kernel

memory maps

44

Host (Nginx) . Extension Runtime :
¥
Entry 1 | : > extl | Extension
Entry 2 K ¥ ext2| (modules)
AN
Host Extension
Runtime

Entry em— Extension

Host (Nginx) . Extension Runtime :
¥
Entry 1 | : > extl | Extension
Entry 2 K ¥ ext2| (modules)
AN
Host Extension
Runtime

Entry em— Extension

Safety

violation

Host

Performance
penalty

]

Entry

Extension
Runtime

Extension

1 violationsg |sr======sssaaas
Host (Nginx) 5 Extension

: 0
Entry 1 K > extl | E;
Entry 2 £ ¥ ext2| (O
AN |
N\ e
Performance
penalty

47

Fine-grained

‘ safety inter—connectj

Entry 1

Host (Nginx) | Vi

Extension Runtime :

Entry 2

Vi
<
Vi
<

fine-grained safety and

efficiency

v

interconnectedness trade-offs
Host Extension
Runtime
Entry em— Extension

|solation

3 "Near-native
speed

g .
- \ . -
T2 extl | Extension]:
AN

[4

ext? (modules)

2

48

P
Process / sandt

isolation

Stage 1: Development

Host

Entry

Developmenttime

EIM Spec

writcsT

e

Application
Developer(s)

Stage 2: Deployment

Host

Entry

Extension Runtime

\| Extension

Development time

EIM Spec

Deployment time
EIM Spec

writes

49

Execution extensi

on runtime in the

same process for
efficiency

— J
eBPF app
\ Process 1

Compatible

with eBPF

Conceal extension

entry for efficiency: Host Bpftime bpftime Loader EIM: no

Ising binary rewriting Runtime runtime
to remove unused Entry <::> Extension € verifier] cost
extension entries

/

S

Hardware features for
efficient isolation

bpftime: userspace eBPF extension framework

Provide efficient
solution to enforce EIM and
iIsolation '

O

Verification: EIM: no runtime
cost

Execution extension
runtime in thesame process
forefficiency

Conceal extension entry for
efficiency: using binary
rewriting to remove unused
extension entries

Hardware features for
efficient isolation
Compatibility

Host (Nginx)

. Extension Runtime ;

Entry 1 ¥

Entry 2 ¥

P

S .
: > extl | Extension J:

. M ext2 (modules)

Conceal
Entry
bpftime (Uprobe..)

Runtime
(mpk) | Target process

[verifier)

-

51

EIM: Development-Time Specification

* Developers annotate code for capabilities
 Automatically extracted into capability manifest

EIM STATE DEFINE(readPid, read, ngx pid);
EIM_HFUNC_DEFINE_WITH_CONSTRAINTS(

Host Application nginxTime,
Entry 1§ HF_RET_POSITIVE);
Entry 2 & EIM_EXTENSION_ENTRY_DEFINE (
writesT processBegin,
Q ngx_http process request,
Application ,

Developer(s) Request *);
3

EIM: Deployment-Time Specification

* Extension Manager write
simple YAML policies to
explore
Interconnectedness/safety should be allowed?
trade-offs without recompiling

What extensions

| Extension Class (?

2 name = "observeProcessBegin", .

3 extension_entry = "processBegin", Extension

4 allowed = {1nstructions<inf, nginxTime, hﬂanger: ---------------------------
readPid, read(r)}) Host Application . Extension Runtime

s Extension Class | EnUyI y :f)fmtl .

6 name = "updateResponse", A : Extension

7 extension_entry = "updateResponseContent" EntryZ () ext? Program

8 allowed = {instructions<inf, read(r), BN

write(r)})

53

contribution

* Background & motivation: Extensions

* Extension Interface Model (EIM): Fine-grained Interface
* bpftime Runtime: safety & performance

* Evaluation

* ... add more and make it a contribution

Q&A?

* GitHub repo:

e Get started: bpftime load ./example/malloc/malloc
bpftime start nginx -c ./nginx.conf

https://github.com/eunomia-bpf/bpftime
https://github.com/eunomia-bpf/bpftime
https://github.com/eunomia-bpf/bpftime

Contribution

* Extension Interface Model (EIM): * bpftime Runtime: An
Solution to navigate fine-grained userspace eBPF runtime
safety-interconnectedness trade- implemented EIM with
off & Two-Phase Specification: Isolation and efficiency

Development-Time (by Developer)
Deployment-Time (by Manager)

* Evaluation: 6 usecases and Up to 6x less overhead

55

Nginx firewall example

Offline:

* Writes custom firewall logic using
nginx helper functions

 Loads their extension at an extension
entry for request processing

At runtime

* Nginx jumps to the extension runtime
when reaches the extension entry

* Extension runtime execute the
extension entry and return to Nginx

Nginx

Entry

Extension
Runtime

N Firewall

56

Six Real-World Use Cases

* Nginx Firewall

* Redis Durability

* FUSE Metadata Cache
* DeepFlow

] bpftime (Public

) Syscou nt Ubfﬂb[JaL’:‘ eBPF runtime for O l‘!:\::r\ahlh’[‘, Network, GPU & General Exten:
e Sslsniff @c++ Wik %9

(grounp and figture?)
GitHub: https://github.com/eunomia-bpf/bpftime

57

https://github.com/eunomia-bpf/bpftime
https://github.com/eunomia-bpf/bpftime
https://github.com/eunomia-bpf/bpftime

Extension Problems

* Real-world safety violations:

Bilibili CDN outage, Apache
buffer overflow, Redis RCE

* Performance penalty:
WebAssembly/Lua impose 10-
15% overhead

Safety
violation

Host

Performance
penalty

]

Entry

Extension
Runtime

Extension

58

contribution

* Background & motivation: Extensions

* Extension Interface Model (EIM): Fine-grained Interface
* bpftime Runtime: safety & performance

* Evaluation

* ... add more and make it a contribution

Q&A?

* GitHub repo:

e Get started: bpftime load ./example/malloc/malloc
bpftime start nginx -c ./nginx.conf

https://github.com/eunomia-bpf/bpftime
https://github.com/eunomia-bpf/bpftime
https://github.com/eunomia-bpf/bpftime

EIM: Extension Interface Model

* Goal: enable fine-grained safety/interconnectedness trade-offs
* Challenge: supporting per deployment tradeoffs

e Solution:

o Two-Phase Specification (Development-Time and deployment-Time)
o Model all resources as capabilities

Host

' Development time
writes | EIM Spec
e
Application Entry
Developer(s)
Entry

During Development

e

Extension
Manger |

Before Deployment

Extension

Developmenttime
EIM Spec

Entry

Extension
Runtime

At Deployment/Runtime

Contributions

* Extension Interface Model (EIM) * bpftime

EIM] . .

[bpftime Runtime
Solution to navigate fine-grained

Safety_i nterconnectedness trade_off Userspace eBPF runtime Implementlng EIM

(N\

Development- | | Deployment-
Time Time

Developer — Manager

.

Isolation || Efficiency

Two-Phase Specrscificaton

* Upto6xless overheadthan current state-of-the-art!

Contributions

{ Extension Interface model (EIM) J

Navigate fine-grained
safety/interconectedness trade-offs for

extensions
Development Deployment
time Spec) time Spec
Developer Manager

Two phase Specification

{ Bpftime runtime J

Efficient support for EIM and isolation through
userspace eBPF runtime

U 4

Isolation Efficiency

* Upto6xless overheadthan current state-of-the-art!

62

EIM: Extension Interface Model

* Goal: enable fine-grained safety/interconnectedness trade-offs

* Challenge: supporting per deployment tradeoffs

* Solution:
o Two-Phase Specification (Development-Time and deployment-Time)

o Model all resources as capabilities

Host Application

@ Development time
, EIM Spec
Writes
- Entry
App
Developer Entry

1. During Development

Extension

U

» ~ Writeg
—l

Extension
Manager

Deployment
time
EIM Spec

2. Before Deployment

"

Deploy
Spec

v

Extension i
, Verify :
Runtime N Extension

ﬁ

Dev_Spec

3. At Deployment/Runtime

Extension Requirements

* Fine-grained
safety and
Interconnected
ness trade-offs

e |solation:
* Efficiency:

4 fine-grained)
safety/interconn

/[efficiency J

Entry D Extension

ectedness
tradeoffs
v
Host Extension
Runtime

[Isolatm

64

EIM: Extension Interface Model

* Goal: enable fine-grained safety/interconnectedness trade-offs

* Challenge: supporting per deployment tradeoffs

* Solution:
o Two-Phase Specification (Development-Time and deployment-Time)

o Model all resources as capabilities

Host Application

@ Development time
, EIM Spec
Writes
- Entry
App
Developer Entry

1. During Development

» ~ Writeg
—l

Extension
Manager

Deployment
time
EIM Spec

2. Before Deployment

"

Deploy
Spec
Exteljsmn Verify .
Runtime N Extension

3. At Deployment/Runtime

Extension Problems & requirements

Safety
violation

Real-world safety
violations:

* Bilibili CDN outage, Apache
buffer overflow, Redis RCE

Performance penalty:

* WebAssembly/Lua impose 10-
15% overhead

Requirements:

* Fine-grained safety and
interconnectedness trade-offs

* |solation
* Efficiency

Host

Entry

f

-

(&

fine-grained

safety/interconnected

ness
tradeoffs

/\

J

— Extension

Performance
penalty efficiency

Extension
Runtime

l Isolation I

66

	幻灯片 1: Extending Applications Safely and Efficiently
	幻灯片 2: Extensions are everywhere
	幻灯片 3: Nginx firewall example
	幻灯片 4: Extension Problems & requirements
	幻灯片 5: State-of-the-Art Falls Short
	幻灯片 6: Contributions
	幻灯片 7: Outline
	幻灯片 8: EIM: Extension Interface Model
	幻灯片 9: EIM: Development Time Specification
	幻灯片 10: EIM: Deployment Time Specification
	幻灯片 11: Outline
	幻灯片 12: bpftime: userspace eBPF extension framework
	幻灯片 13: Outline
	幻灯片 14: Six Real-World Use Cases
	幻灯片 15: Customization: Nginx firewall
	幻灯片 16: Observability: sslsniff
	幻灯片 17: Contributions
	幻灯片 18
	幻灯片 19: Backup
	幻灯片 20: Customization: Nginx firewall
	幻灯片 21: Observability: sslsniff
	幻灯片 22: Four Roles in an Extension Ecosystem
	幻灯片 23: Micro-Benchmark
	幻灯片 24: Extensions have issues
	幻灯片 25: Nginx example
	幻灯片 26: Get started
	幻灯片 27: Loader & Runtime Workflow
	幻灯片 28: Efficient Safety & Isolation
	幻灯片 29: Contribution
	幻灯片 30: State-of-the-Art Falls Short
	幻灯片 31: Summary of EIM
	幻灯片 32: bpftime - Why We Need a New Runtime
	幻灯片 33
	幻灯片 34
	幻灯片 35
	幻灯片 36
	幻灯片 37
	幻灯片 38
	幻灯片 39
	幻灯片 40: Nginx firewall example
	幻灯片 41: EIM: Extension Interface Model
	幻灯片 42: EIM: Development-Time Specification
	幻灯片 43: EIM: Extension Interface Model
	幻灯片 44: bpftime: userspace eBPF extension framework
	幻灯片 45
	幻灯片 46
	幻灯片 47
	幻灯片 48
	幻灯片 49
	幻灯片 50
	幻灯片 51: bpftime: userspace eBPF extension framework
	幻灯片 52: EIM: Development-Time Specification
	幻灯片 53: EIM: Deployment-Time Specification
	幻灯片 54: contribution
	幻灯片 55: Contribution
	幻灯片 56: Nginx firewall example
	幻灯片 57: Six Real-World Use Cases
	幻灯片 58: Extension Problems
	幻灯片 59: contribution
	幻灯片 60: EIM: Extension Interface Model
	幻灯片 61: Contributions
	幻灯片 62: Contributions
	幻灯片 63: EIM: Extension Interface Model
	幻灯片 64: Extension Requirements
	幻灯片 65: EIM: Extension Interface Model
	幻灯片 66: Extension Problems & requirements

