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Yiwei Yang Reinforcement Learning (Professor Ziyu Shao): Homework #3 Problem 1

Problem 1

Problems 3 For Lemma

1. First we have Yn = 1, which means that from nth to (n + 1)th has its state changed. So because there’s
only 2 state, we can list the possibility as Xn = A

∧
Xn+1 = B and Xn = B

∧
Xn+1 = B. Then notice

that given Yn−1 = 1, we have Xn−1 = B, the future state Yn+1 and Xn+1 are impacted both. So, we
can say that, the future is affetcted by the previous state. So Yn isn’t Markov Chain.

2. Proofs by Induction and Contradiction: Suppose Zn is not Markov Chain for m ∈ N. First, we have
the base condition m = 1 is true since Yn is (Xn, Xn+1) by the previous proof. Also, for m + 1 (Zn)n
isn’t a Markov Chain. So, we get that Zn = {the (n−m + 1)st to nth terms o f the Yn chain}

Problems 2

1. (a) From the question we can get that ∀n ∈ N, we have the marginal distribution of the Xn, which
is s. We can write the distribution as an expected value: pX(x) =

∫
s pX|S(x|s)pS(s)ds, since we

have that X0 s and that the stationary distribution for the chain.

(b) Denote the nth variable of s is sn. By the linearity of expectation, we have the average number of
the variables that are valued in 3 is 10s3, considering 10 variables.

2. Given Xn ∈ {1, 2, 3} and corresponding Yn. we have symmetric input:

Q =

 1
2

1
2 0

1
3

1
3

1
3

0 1 0


When Xn = 1, we have Yn = 0. When Xn = 2, we have Yn = 0. When Xn = 3, we have Yn = 2. For
state of 1 and 2, they can be merged into mutual state zero. Also, state 3 is transfromed in 2. By 3(b),
we have ∀i, j ∈N, qi j = 1

3 .

The above input Q can get the result Y1 = 0, Y2 = 2, which means that the future state relies on the
zero state. So, Yn do not have the markov property.

Problems 4

1. First, given the graph, we have ∀n ∈N P(Xn+1 = 1|Xn = 1) = P(Xn+1 = 2|Xn = 2)p and P(Xn+1 =

1|Xn = 2) = P(Xn+1 = 2|Xn = 1) = 1− p. Therefore, we have:

Q =

[
p 1− p

1− p p

]

2. Let’s introduce a stationary distribution π =

[
π1
π2

]
, a probability distribution that remains unchanged

in the Markov chain. By defination, we have π = πQ, amd π is the invariant by the matrix Q. Take
Q in the equation (I −Q)π = 0, we have[

p 1− p
1− p p

]
π = 0

[
1 −1
−1 1

]
π = 0

π1 − π2 = 0

We assume the distribution is normalized, so we have π1 + π2 = 1, so we have the stationary distri-

bution π =

[
π1
π2

]
=

[ 1
2
1
2

]
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Yiwei Yang Reinforcement Learning (Professor Ziyu Shao): Homework #3Problem 1 (continued)

3. Let n ∈N be arbitary. Suppose pn ∈ (0, 1),we have the property that

Qn =

[
pn 1− pn

1− pn pn

]
[

pn+1 1− pn+1
1− pn+1 pn+1

]
= Qn+1 = QnQ =

[
pn 1− pn

1− pn pn

] [
p 1− p

1− p p

]


pn+1 = pn p + (1− pn)(1− p)

1− pn+1 = pn(1− p) + (1− pn)p

1− pn = (1− pn+1)p + pn(1− p)

pn+1 = (1− pn)(1− p) + pn p

pn+1 − (2p− 1)pn = 1− p

By the thereom of the characteristic equation, suppose the final recursive is pn+1 = pH
n + pP

n . We have
the characteristic polynomial is λ− (2p− 1) = 0 and the particular solution can be written as pP

n = 1
2 .

So pn = A(2p− 1)n+1

To compute A, we have to apply the convergence properties as n → ∞, pn is convergent.
limn→∞ pn = limn→∞(A(2p − 1)n + 1

2 ) = Alimn→∞(2p − 1)n + 1
2 = 1

2 So, we have limn→∞Qn =

limn→∞

[
pn 1− pn

1− pn pn

]
=

[ 1
2

1
2

1
2

1
2

]
Problems 6

1. s is the stationary distribution for chains three chains. As we’ve considered in 2(2), s is the marginal
distribution for (Xn)n, (Yn)n, (Zn)n. So, the possibility of some Drogon at their home is s0. Applying
the linearity property, we have that the average number of times of Drogon visiting home is 25s0.

2. (Wn)n is a Markov chain and here’s the proof.

(a) All we need is to prove its markoc property. ∀n ∈ N, xn, yn, zn ∈ M P((Xn+1, Yn+1, Zn+1) =

(xn+1, yn+1, zn+1)|{(X0, Y0, Z0) = (x0, y0, z0), (X1, Y1, Z1) = (x1, y1, z1), (X2, Y2, Z2) = (x2, y2, z2)

, ...(Xn, Yn, Zn) = (xn, yn, zn)})(Denote the RHS = Ans,{(X0, Y0, Z0) = (x0, y0, z0), (X1, Y1, Z1) =

(x1, y1, z1), (X2, Y2, Z2) = (x2, y2, z2), ...(Xn, Yn, Zn) = (xn, yn, zn)} = An)

(b) By bayesian theory, we have Ans = P(Xn+1 = xn+1|An)P(Yn+1 = yn+1|Xn+1 =

xn+1, An)P(Zn+1 = zn+1|Xn+1 = xn+1, Yn+1 = yn+1, An)

(c) By LOTE and MDP, we have Ans = P(Xn+1 = xn+1|Xn = xn)P(Yn+1 = yn+1|Yn = yn)P(Zn+1 =

zn+1|Zn = zn) = LHS

3. Given that 3 dragons start at home at time 0, we have they have an average time 1
s0

to get home again.
Applyiing the independency of three dragons’ momvements, the expectaiton time wil be 1

s3
0
.

Problems 8

1. First, denote M be the state space. Denote qi,j = 0 when there’s no edge between the i and the j,

∀ di f f erent i, j ∈ M. Suppose there’s an edge, we have qi,j =
1
di

min( di
dj

, 1) =


1
di

di > dj
1
dj

di ≤ dj
. For all

the accepting state we have qacc,acc = 1− Σi 6=jqi,j

2. Then
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Yiwei Yang Reinforcement Learning (Professor Ziyu Shao): Homework #3Problem 1 (continued)

(a) we observe that qi,j is symmetric, which means that qj,i =

 1
dj

dj
di

with edge

0 without edge
= qi,j.

(b) we observe that the chain is reversible, so we have s = ( 1
M , 1

M , 1
M , 1

M ..., 1
M )

Problems 14

1. The transition probabilites is equal to find the probability P(Xn+1 = i|Xn = i) of ∀i ∈ 0, 1, ..N Xn = i.

(a) If we don’t have any black balls of the previous state the next state will be that some of the
white balls from the first urn and the black balls from the second urn. We have the start state
P(Xn+1 = 1|Xn = 0) = 1 and the accepting state P(Xn+1 = N − 1|Xn = N) = 1.

(b) ∀i ∈ {1, 2, ...N − 1} . Take Xn+1 = i− 1 It’s equal to choose the black ball from the first urn and

white ball from the second urm. So we have P(Xn+1 = i − 1)|Xn = i) = i
N

2
. Similarly, when

Xn+1 = i + 1 we have P(Xn+1 = i + 1)|Xn = i) = N−i
N

2

(c) Therefore, teh number of black balls in teh first urn remains the same as we picked the different
colors. So, we have P(Xn+1 = i|Xn = i) = i

N
N−i

N + N−i
N

i
N = 2 i(N−i)

N2

2. Proofs by Induction

(a) For i = 0, we have when j = 1, (N
0 )(N

N)

(2N
N )
∗ 1 =

(N
1 )(N

N−1)

(2N
N )N2 . So s0q0,1 = s1q1,0 is true.

(b) Suppose i = 1, ....N − 1 is for j = i− 1 and j = i + 1. Then for 1 < i ≤ N − 1 and j = i− 1, we

have to prove siqi,i−1 = si−1qi−1,i
(N

i )(N
N)

(2N
N )

=
(N

i−1)(
N
N−i+1)

N2 .

(c) To prove LHS = RHS. We have N!
(i−1)!(N−i)! = N!

i!(N−i)! i = (N
i )(N

N−i)i
2 = (N

i−1)(
N
N−i+1)(N − i +

1)2 = N!
(i−1)1!(N−i+1)! (N − i + 1) = N!

(i−1)!(N−i)! . End of proof.

(d) So, we have showed that the chain is reversible, s is stationary distribution.

Problems 16

1. Suppose the space state is M. We have to going to prove that v = (v1, ...vN) statisfy the equation
v = vQ. And we have the ith equation vi = ΣN

j=1vjP(Xn+1 = i|Xn = j), applying P(Xn+1 = i|Xn =

j) =
ωi,j
vj

, so vi = ΣN
j=1vj

ωi,j
vj

= ΣN
j=1ωi,j. So, we prove that the stationary distribution is proportional to

v.

2. For arbitary reversible Markov Chain with transposition matrix Q on the space state M. For the
distribution s = (s1, s2, ...sN). we have siqi,j = sjqj,i. By 16(1), the siqi,j is symmetric and undirected,
so we have vi = Σjsiqi,j = Σjsjqj,i = ΣjP(X0 = j)P(X1 = i|Xo = j) = P(X1 = i) = si. By 16(1), v is
not proportional to s. So, v = s.

Problems 17

1. Given QC =

[
0.2 0.8
0.8 0.2

]
. Because the matrix is symmmetric, we have the uniform sC = ( 1

2 , 1
2 ). So, we

have QM =

[
0.7 0.3
0.6 0.4

]
. Solve the equation, we have sM = ( 2

3 , 1
3 ).

2. It’s Markov Chain. Because the cat and mouse have the fact their past and future are independent.
Hence, the movements of the cat’ and mouse’s are Markov Chain/

Problem 1 continued on next page. . . 4



Yiwei Yang Reinforcement Learning (Professor Ziyu Shao): Homework #3Problem 1 (continued)

3. Let a and b as desired value. we have{
a = 0.8 ∗ 0.4 + 0.2 ∗ 0.6 + 0.2 ∗ 0.4 ∗ (1 + a) + 0.6 ∗ 0.8 ∗ (1 + b)

b = 0.8 ∗ 0.7 + 0.2 ∗ 0.3 + 0.8 ∗ 0.3 ∗ (1 + a) + 0.2 ∗ 0.7 ∗ (1 + b)

So, we have

{
a = 335

169
.
=1.98

b = 290
169

.
=1.72

Problems 18

1. 0 1 2
0.2

0.8
0.2

0.8

1

2. Notice that state zero is transient. Finally, when we get to the state two, the chain stays there forever,
the state 2 is the accepting state.

So, our variable T which is the time of arrival in state two has the distribution of k → (k+r−1
k )(1−

p)r pk, which is the negative binomial distribution. The parameter r = 2 and p = 0.8

So, we have the Mean and the Variance: E(T) = pr
1−p = 0.8∗2

1−0.8 = 8 and Var(T) = pr
(1−p)2 = 0.8∗2

(1−0.8)2 = 40

Problems 19

1. First, we notice that the state 1 and 2 is transient, which the random N equals 0 iff first step to state 2
and second step to state 3. Hence, we have P(N = 0) = 1

2
2
= 1

4

∀k ∈ N, we have 2 conditions for letting the state 1 be visited k times before leaves state 2:

(a) The chain comes to state one in advance of kth visit.

(b) N = 0 happens when the chain comes to kth visits.

Denote the times to visit state 2 are t. We just first pick the k + l from 2l state and choose the state 2 by
the probability of 1

2 for k + 1 times followed by state 1.

So, P(N = k) = 1
4 Σk

t=0(
k+t
2t )(

1
2 )

k+t.

Eventually, we have P(N = k) =

{
1
4 k = 0
1
4 Σk

t=0(
k+t
2t )(

1
2 )

k+t k ∈ N
. For validation, we have ΣxP(x) =

1
4 Σ∞

k=0Σk
t=0(

k+t
2t )(

1
2 )

k+t = 1
4 Σk

t=0Σ∞
k=0(

k+t
2t )(

1
2 )

k+t + 1
4 Applying Mathmetica, we have Ans = 1

4 +
1
9 Σ4−t(3 ∗ 22k+1n + 5 ∗ 22k+1 − 1) .

=1

2. Notice state 1 and 2 is reducible and after it’s reduced to only state 1, the new chain has stationary
distribution. The average time that the chain spends in state three is equal to S3. Also, the new chain
has symmetric transposition matrix 

0.5 0.5 0 0 0
0.5 0.5 0.3 0.2 0
0 0.3 0 0 0.7
0 0.2 0 0.8 0
0 0.5 0.7 0 0.3


because we have qi, j = qj,i∀ states i and j. Hence, it is reversible, hence s3 = 1

4

5






































