Reinforcement Learning: Homework #3
Due on April 16, 2020 at 11:59pm

Professor Ziyu Shao

Yiwei Yang
2018533218

Yiwei Yang Reinforcement Learning (Professor Ziyu Shao): Homework #3 Problem 1

Problem 1

Problems 3 For Lemma

1. First we have Y,, = 1, which means that from ny, to (n + 1)y, has its state changed. So because there’s
only 2 state, we can list the possibility as X, = A A X,,41 = Band X;, = B A X,,11 = B. Then notice
that given Y;,_; = 1, we have X,,_; = B, the future state Y}, 1 and X,,;1 are impacted both. So, we
can say that, the future is affetcted by the previous state. So Y, isn’t Markov Chain.

2. Proofs by Induction and Contradiction: Suppose Z, is not Markov Chain for m € IN. First, we have
the base condition m = 1 is true since Y is (X, X, +1) by the previous proof. Also, for m +1 (Z,),
isn’t a Markov Chain. So, we get that Z, = {the (n — m + 1)s to ny, terms of the Y, chain}

Problems 2

1. (a) From the question we can get that Vi € IN, we have the marginal distribution of the X;;, which
is 5. We can write the distribution as an expected value: px(x) = [, px|s(x[s)ps(s)ds, since we
have that X s and that the stationary distribution for the chain.

(b) Denote the ny, variable of s is 5,,. By the linearity of expectation, we have the average number of
the variables that are valued in 3 is 10s3, considering 10 variables.

2. Given X, € {1,2,3} and corresponding Y. we have symmetric input:

1 1
239
Q=13 5 3
01 0

When X,;, = 1, we have Y;;, = 0. When X,, = 2, we have Y;, = 0. When X,, = 3, we have Y,, = 2. For
state of 1 and 2, they can be merged into mutual state zero. Also, state 3 is transfromed in 2. By 3(b),

wehave Vi,j € N, q;j = %

The above input Q can get the result Y; = 0,Y, = 2, which means that the future state relies on the
zero state. So, Y;, do not have the markov property.

Problems 4

1. First, given the graph, we have Vin € N P(X,11 = 1|X, = 1) = P(X41 = 2|Xn = 2)p and P(X;11 =
11Xy, =2) = P(Xy4+1 = 2|X, = 1) = 1 — p. Therefore, we have:

| r 1—ﬂ
© L—p p

m
2
in the Markov chain. By defination, we have 7w = 7wQ, amd 7 is the invariant by the matrix Q. Take
Q in the equation (I — Q) = 0, we have

7, s

2. Let’sintroduce a stationary distribution 77 = [} , a probability distribution that remains unchanged

1-p p
1 -1

{—1 1}”_0
71'1—7'[2:0

We assume the distribution is normalized, so we have 711 4+ 715 = 1, so we have the stationary distri-
1
. T 5
bution 7w = [1] = {%]
Uv) 3

Problem 1 continued on next page. .. 2

Yiwei Yang Reinforcement Learning (Professor Ziyu Shao): Homework #3Problem 1 (continued)

3. Letn € IN be arbitary. Suppose p, € (0,1),we have the property that

no_ Pn 1- pn]
Q L — Pn Pn

Pt 1—pn+1]: il _ :{ Pn 1—an p 1—;1
1=Pus1 Putt < Q0 L=pn pn I=p p
Prn1 = pnp + (1 —pu)(1—p)
L=ppr1=pu(l=p)+ (1 —pa)p
L=pn=1=pur)p+pru(1-p)
Pns1 =1 —pn) (X —p)+ pap

Pu1— 2p=Dpp=1-p

By the thereom of the characteristic equation, suppose the final recursive is p,, 11 = p + p%. We have
the characteristic polynomial is A — (2p — 1) = 0 and the particular solution can be written as pf = 1.

So pn = A(2p — 1)1

To compute A, we have to apply the convergence properties as n — oo, p, is convergent.
limycopn = lity—eo(AQ2p —1)" + 1) = Alimye(2p — 1)" + 3 = 1 So, we have lim, Q" =

s

1-— Pn Pn
1. s is the stationary distribution for chains three chains. As we’ve considered in 2(2), s is the marginal
distribution for (Xy)n, (Yn)n, (Z)n- So, the possibility of some Drogon at their home is sg. Applying
the linearity property, we have that the average number of times of Drogon visiting home is 25s.

N[N =

Tty ses {

N[

Problems 6

2. (Wy)n is a Markov chain and here’s the proof.

(a) All we need is to prove its markoc property. Vi € N, xy, yn, 20 € M P((Xy41, Yat+1, Zn+1) =

(xn+lr]/n+1zzn+l)|{(XOr YO/ ZO) = (xO/yO/ZO)/ (X11Y1/ Zl) = (xllyllzl)/ (XZI Y2/ ZZ) = <x2/y2122)
s Xn, Yn, Zn) = (Xn,Yn, zn) })(Denote the RHS = Ans,{(Xo, Yo, Zo) = (x0,Y0,20), (X1, Y1,Z1) =

(x1,y1,21), (X2, Y2, Z2) = (x2,Y2,22), +-(Xn, Y, Zn) = (Xn, Y, Zn) } = An)
(b) By bayesian theory, we have Ans = P(X,11 = Xp11|An)PYp1 = Yn1lXus1 =
Xns1, An) P(Zny1 = zng1 | Xngr = Xng1, Va1 = Yng1, An)
(c) By LOTE and MDP, we have Ans = P(X,11 = Xp11|Xn = %) P(Y1 = Yni1|Yn = yn) P(Zy1 =
Zp11|Zy = z4) = LHS
3. Given that 3 dragons start at home at time 0, we have they have an average time % to get home again.

Applyiing the independency of three dragons” momvements, the expectaiton time wil be %

Problems 8

1. First, denote M be the state space. Denote q;; = 0 when there’s no edge between the i and the j,
di > d;
di < d;

. For all

[

V dif ferent i,j € M. Suppose there’s an edge, we have q;; = %min(g—;, 1) = {

the accepting state we have gaccacc =1 — Xiziqi;
2. Then

Problem 1 continued on next page. .. 3

Yiwei Yang Reinforcement Learning (Professor Ziyu Shao): Homework #3Problem 1 (continued)

d; .
))) % + with edge
(a) we observe that g; ; is symmetric, which means that q;; = ¢ % * = qi -
0 without edge

)

-

1
ey

E\H

(b) we observe that the chain is reversible, so we have s = (% %
Problems 14
1. The transition probabilites is equal to find the probability P(X,+1 = i|X, =i) of Vi€ 0,1,.N X,, = i.

(a) If we don’t have any black balls of the previous state the next state will be that some of the
white balls from the first urn and the black balls from the second urn. We have the start state
P(X,+1 = 1|X,, = 0) = 1 and the accepting state P(X, 1 = N —1|X, = N) = 1.

(b) Vie {1,2,..N —1} . Take X;;41 = i — 1 It's equal to choose the black ball from the first urn and
white ball from the second urm. So we have P(X, 11 =i—1)|X, =1i) = ﬁ'z. Similarly, when
Xpi1 =i+ 1wehave P(Xyyq = i+ 1)|X, = i) = Vi’

(c) Therefore, teh number of black balls in teh first urn remains the same as we picked the different
colors. So, we have P(X,, 11 = i|X, =1i) = 1 N Py N i l =2 ()

2. Proofs by Induction

M) (N1
(ZN)NZ

Ny/N
(a) Fori =0, wehavewhenj=1, (()(%NI;’) x1 =

. 5050401 = 5191 is true.

(b) Supposei =1,..N—1lisforj=i—1landj=i+1 Thenforl <i< N—-1landj=i-1 we

O _ EDE)

have to prove s;q;i—1 = si—14i-1,i @) N2
(c) To prove LHS = RHS. We have (i_l)l\(”N 7= 1'(1\1;]! il = ME_pi = NN)(N—i+
_ N! ;
1) = m(N —i+1)= m End of proof.

(d) So, we have showed that the chain is reversible, s is stationary distribution.
Problems 16

1. Suppose the space state is M. We have to going to prove that v = (vy,...vN) statisfy the equation
v = vQ. And we have the iy, equation v; = Z]-Iilij(XnH = i|X, = j), applying P(X,, 11 = i| X, =
j) = wv—’]f, sov; = LN e 11)] U = Z].Ii 1w j. So, we prove that the stationary distribution is proportional to
v.

2. For arbitary reversible Markov Chain with transposition matrix Q on the space state M. For the
distribution s = (s1,2,...sn). we have s;q;; = s;q;;. By 16(1), the sq; ; is symmetric and undirected,
so we have Ui = Z]‘Siqi,j = Z]'S]'q]"i = Z]‘P(XO = j)P(X1 = i|Xo =]) = P(X1 = Z) = S;. By 16(1), v is
not proportional to s. So, v = s.

Problems 17
02 08
0.8 0.2

0.7 03
06 04

1. Given Q¢ = [] . Because the matrix is symmmetric, we have the uniform sc = (%, %) So, we

have Qu = [} . Solve the equation, we have sy; = (%, %)

2. It's Markov Chain. Because the cat and mouse have the fact their past and future are independent.
Hence, the movements of the cat’” and mouse’s are Markov Chain/

Problem 1 continued on next page. .. 4

Yiwei Yang Reinforcement Learning (Professor Ziyu Shao): Homework #3Problem 1 (continued)

3. Let a and b as desired value. we have

a=08%04+02%06+02%04%(1+a)+0.6+x08x(1+0D)
b=08%07+02%x03+0.8%03%(1+a)+02x0.7x(1+b)

335 .
= 222 - 198
So, we have { ¢ égg -
b= 1 2172
Problems 18
0.2 0.2
1. 08 C@ 1 @D 1
0.8

2. Notice that state zero is transient. Finally, when we get to the state two, the chain stays there forever,
the state 2 is the accepting state.

So, our variable T which is the time of arrival in state two has the distribution of k — (k+kr*1)(1 —
p)"p¥, which is the negative binomial distribution. The parameter r = 2 and p = 0.8

So, we have the Mean and the Variance: E(T) = & = 082 — 8and Var(T) = (1_;7;)2 = (10_'%’f§)2 =40
Problems 19

1. First, we notice that the state 1 and 2 is transient, which the random N equals 0 iff first step to state 2

2
and second step to state 3. Hence, we have P(N = 0) = 1" =1

Vk € N, we have 2 conditions for letting the state 1 be visited k times before leaves state 2:
(a) The chain comes to state one in advance of k1 visit.
(b) N = 0 happens when the chain comes to k;h visits.

Denote the times to visit state 2 are t. We just first pick the k + I from 2/ state and choose the state 2 by
the probability of 4 for k + 1 times followed by state 1.

So, P(N = k) = 12k (5 (3)F+.

1 k=0
Eventually, we have P(N = k) = { % . For validation, we have ~xP(x) =
’ () {izf—o(kﬂt (MFttkeN (x)
%Zzo:ozlfzo(kﬂf)(%)kﬂ = }IZLOZ;’;O(";)(% Yokt 4 % Applying Mathmetica, we have Ans = % +

SZATH (3 2%y 4 5 22k 1) -1

2. Notice state 1 and 2 is reducible and after it’s reduced to only state 1, the new chain has stationary
distribution. The average time that the chain spends in state three is equal to S3. Also, the new chain
has symmetric transposition matrix

05 05 0 0 O

05 05 03 02 O
0 03 0 0 07
0 02 0 08 O
0 05 07 0 03

because we have qi, j = q;,;V states i and j. Hence, it is reversible, hence s3 = }1

 Jupyter Untitied15 aussaes v - -

File Edit Wiew Insert Cell Kernel Help Trusted | Python 3 O

B+ = & B 4+ % MHRun B C W | code L

Three Server Organizations

l. basic settings

In [1]: impert heapq
import random
import matplotlib.pyplot as plt
import numpy as np
import gqueue
import copy

1. Denotions

a. Random events

« Arrival process
= Packets arrive according to a random process
= Typically the armrival process is modeled as Poisson
= The Poissan process
= Arrival rate of A packets per second
= Over a small interval 8, we have Foioory one arrivar = A6 + 0(8),

PI]arrr'JwIs. =] — Ad + 0(d), Pmnf\efhunmea_rruw = Orlé} Where ng;j —Dasd— 0.

« Also the process overall can be described as:

AT

* Fharrivals in interval T =

n!
= where, # = number of arrivals in'T,

b. Customer (Server)

Denote the customer have the init variables,

« The customer obeys the Markov property{memoryless):
s PT <ty +1t|T>ty)=PT<1)
« The arriving of the customer obeys the rule of Little's theorem

A packet per second —*

* N =average number of packets in system
* T =average amount of time a packet spends in the system

= A=arrival rate of packets into the system
(not necessarily Poisson)

* Little's theorem: N=AT
= Can be applied to entire system or any part of it

= Crowded system -> long delays
On 2 rainy day people drive slowly and roads are more congested!

class Customer:
def _ init_ (self,arrival_time,service start_time,service_time,fdm=06,k=8):

self.arrival_time=arrival_time
self.service_start_time=service_start_time
self.service_timesservice_time
self.service_end_time=self.service_start_time+self.service_time
if fdm==0:

self.wait=self.service start _time-self.arrival_time
else:

self.wait=(self.service_start_time-self.arrival_time)/k

Il. Three Simulations

1. FDM Queue Simulation

FDM is supposed to be a kind of signal mux technology widely used in dem and modem. In the

category of Queuing theory, it's actually very similar to M-D-1 Queue with vacations, where
D= %r + yﬂj and vacations means server goes on vacation for m time units when there is
nothing to transmit

The state space is the set [0. 1.2, 3.... | where the value corresponds to the number of entities
in the system, including any currently in service Arrivals occur at rate A according to a Poisson
process and move the process from state { to § 4 |.Service times are deterministic time D
(serving atrate g = %).A single server serves entities one at a time from the front of the queue,
according to a first-come, first-served discipline. When the service is complete the entity leaves
the queue and the number of entities in the system reduces by one.

We have the transition Matrix defined as
iy ay as ay...

p=l% @ @& a&.. .nn=£_"n=ﬂl
0 ay ay n!
ﬂ lf] .C.'n .ﬂl
FDM Frames
User 1 IDLE SLOT for User 1
User 2 SLOT for User 2 IDLE
User m SLOT for User m SLOT for User m

The buffer is of infinite size, so there is no limit on the number of entities it can contain.

Buffer 1 packets/sec

T [—cmp

Statistical
Mutliplexer

(Alg) mmn
fh= ”'u-'-{,u—i) formula

def FDM(lambd,mu,k):
Simulation Time
simulation_time = 380
simrlock=R

Customers=[]
kqueue=[]
last_k_qgueue_Customer = [[]]
last_k_Customer = []
while simclock<simulation_time:
if len(Customers)<=k:
arrival_time=1/mu
service start_time=arrival_time
else:
carrival time+=1/mu
k_customer = last_k_Customer[len(last_k_Customer)-k:]
‘service_start_time=max{arrival_time,min(k_customer))

service_time = random.expovariate(mu)
end_time = service_start_time + service_time
last_k_Customer.append(end_time)

Add new Customer
if arrival_time <=simulation_time and end_time <= simulation_time:
Customers.append(Customer(arrival time,service start time,service ti

Increment clock till next end of service
if arrival_time <= simulation_time:
simclock=arrival time
else:
simclock = simulation_time

Waits=[a.wait for a in Customers]
avgQdelay=sum{Waits)/len{lWaits)

served = len{Customers)

Total _Times = [a.wait+a.service_time for & in Customers]
Mean_Time = sum{Total Times)/len(Total_Times)

aveQlength = (Mean Time/float(simclock)) * served
Service_Times=[a.service_time for a in Customers]

if sum(Service _Times) *= simclock:
util = 1

else;
util=sum{Service Times)/simclock

avgQlength/=k
aveQdelay/=k

Output Result

print ('FDM Results: lambda = ¥1f, mu = ¥1f, k = %d' ¥ (lambd,mu,k))
print ('FDM Total customer served: %d' % served)

print ('FDM Average queue length: %1f' % avgQlength)

print ('FDM Average customer delay in queue: %1f' % avgQdelay)
return avgQdelay

In [78]: FDM(5.@/c@, 8.8/6@,1)

FDOM Results: lambda = 8.883333, mu = ©.133333, k =1
FOM Total customer served: 48

FDM Average gueue length: 1.817358

FOM Average customer delay in gueue: 2.918219

out[78]: 2.918219274149586

The validation of the average delay computed

Equilibrium analysis

+ Assume m Poisson streams of fixed length packets of arrival rate Ak each multiplexed by
FDOM on m subchannels.

» Suppose it takes k time units to transmit a packet, so p=1/k.

+ The total system load: p= A

Averaae customer delav in aueue

In [47]:

For M-D-1 gqueue , we havet the average the estimate of customer delay is W =

pk*

Wipy = —/———
o koM = 5
In this case ﬁ‘ll =4 209182193

Ul-—) B

mu = 18e8.8 [&e
ratios = [u / 10.8 for u in range(l, 11)]
avgdelay = []
for ro in ratios:
delay= FDM{mu®*roc, mu, 1}
avgdelay.append(delay)
plt.plot{ratios, avgdelay)
plt.xlabel('Ratio’)
plt.ylabel(Aveg Queuing delay (sec)')
plt.suptitle('FDM with different lambda', fontsize=12)
plt.show()

FDM Results: lambda = 1.666667, mu = 16.666667, k = 1
FOM Total customer served: 4927

FDM Average queue length: 57.535673

FOM Average customer delay in queue: 3.442672

FDM Results: lambda = 3.333333, mu = 16.666667, k = 1
FOM Total customer served: 4995

FDM Average queue length: 26.589387

FDM Average customer delay in queue: 1.532317

FOM Results: lambda = 5.888888, mu = 16.666667, k = 1
FOM Total customer served: 4898

FDM Average gqueue length: 32.899873

FDOM Average customer delay in queue: 1.958436

FDM Results: lambda = 6.666G667, mu = 16.666667, k = 1
FOM Total customer served: 4958

FDM Average gueue length: 37.765467

FDM Average customer delay in queue: 2.228333

FDM Results: lambda = 8.333333, mu = 16.666667, k = 1
FDM Total customer served: 4939

FDM Average gqueue length: 24.782987

FDM Average customer delay in queue: 1.445857

FDM Results: lambda = 16.60606680, mu = 16.666667, k = 1
FDM Total customer served: 4938

FDM Average gqueue length: 38.888183

FOM Average customer delay in queue: 1.812872

FDM Results: lambda = 11.666667, mu = 16.666667, k = 1
FOM Total customer served: 4954

FDOM Average gqueue length: 48.278771

FOM Average customer delay in queue: 2.862641

FDM Results: lambda = 13,333333, mu = 16.666667, k = 1
FOM Total customer served: 49@9

FDM Average gueue length: 49.938818

FDM Average customer delay in queue: 2.998681

FDOM Results: lambda = 15.868888, mu = 16.666667, k = 1
FOM Total customer served: 4983

FDOM Average gueue length: 43.436982

FDOM Average customer delay in queue: 2.59772@

FDOM Results: lambda = 16.666667, mu = 16.666667, k = 1
FDOM Total customer served: 4933

FDM Average gueue length: 29.376556

FDM Average customer delay in queue: 1.726151

FDM with different lambda

L B
-IEI-JI.N
L L R -

Avg Queuding delay (sec)
[(=] Pt
2 5 g

e

A=)

Hl=-p)

0.2 04 06 o8 1a
Ratio

MMK with different k

As we can see in the graphe. The relation fluctuates a lot. On average, the Queing delay is lager
than 2.0.

In [48]: mu = 1808.8 / 6@
ratios = [u / 18.8 for u in range(l, 11}]
avgdelay = []
k= 1
for ro in ratios:
delay = FDM{mu*ro, mu, k)
avgdelay.append{delay)
k=k+1
plt.plot(ratios, avgdelay)
plt.xlabel('Ratio")
plt.ylabel('Avg Queuing delay (sec)')
plt.suptitle(' FDM with diffrent k', fontsize=12)
plt.show()

FDM Results: lambda = 1.666667, mu = 16.666667, k = 1

FDOM Total customer served: 4974

FOM Average queue length: 19.6852515%

FDM Average customer delay in gueue: 1.126887

FDM Results: lambda = 3.333333, mu = 16.666667, k = 2

FDOM Total customer served: SB88

FDOM Average gueue length: 8.499841

FOM Average customer delay in gqueue: 8.B882486

FOM Results: lambda = 5.088888, mu = 16.666667, k = 3

FDM Total customer served: 5881

FDM Average queue length: 8.334568

FOM Average customer delay in gueue: 8.@8eea7

FDM Results: lambda = 6.666667, mu = 16.666667, k = 4

FOM Total customer served: SB882

FOM Average queue length: 8.255556

FDM Average customer delay in gueue: 8.8800088

FDM Results: lambda = B.333333, mu = 16.666667, k = 5

FDM Total customer served: 5684

FOM Average gqueue length: 8.281994

FDM Average customer delay in queue: ©,800290

FDM Results: lambda = 18.000668, mu = 16.666667, k = 6
FDM Total customer served: 5884

FDOM Average queue length: 8.171261

FDM Average customer delay in queue: B.828880

FDM Results: lambda = 11.666667, mu = 16.666667, k = 7
FDM Total customer served: 58866

FDM Average queue length: 8.142356

FDM Average customer delay in gueue: B.BE2E28

FOM Results: lambda = 13.333333, mu = 16.666667, k = 8
FOM Total customer served: 5887

FOM Average queue length: 8.125355

FDM Average customer delay in gqueue: 8.B820220

FOM Results: lambda = 15.8068088, mu = 16.666667, k = 9
FOM Total customer served: 5847

FDOM Average queue length: 8.113938

FOM Average customer delay in gqueue: 8.B882008

FDM Results: lambda = 16.666667, mu = 16.666667, kK
FDM Total customer served: 5889

FOM Average queue length: 8.188388

FDM Average customer delay in gqueue: 8.880808

18

FDM with diffrent k

In [3]):

L]
o
2 g6
=]
=1
g
3 041
g
=< pz2

00 1

02 04 06 08 10
Ratio

FDM with different k

As we can see in the graphe. The Queuing delay is negatively related to average Queuing delay.
The trend drop sharply during the range of () — 0.2, which is in accordance to the previous
induction.

On average, the Queing delay is lager than (.2,

2. M-M-1 Queue Simulation

The state space is the set {0, 1.2, 3.... }. where the value corresponds to the number of
customers in the system. We let Pn denote the probability of # customers in the system.

Arrivals ocour at rate J according to a Poisson process, which moves the system from state i to
state § + | (Since every time the package come). Service times are exponentially distributed with
rate parameter i so that _lP is the mean service time.

A single server serves customers one at a time from the front of the gqueue, according to a first-
come, first-served discipline. When the service is complete the customer leaves the queue and the
number of customers in the system reduces by one, 1.e,, the system moves from state ito § — |,

Suppose the system is in state n. Then, the balance equation reads
(A4 WP, =Py + 1Py

Essentially, & + p: rate of an arrival or departure to P,. A; rate of an arrival to P,_;. p: rate of a
departure from P4,

The boundary condition (near an empty queue) is that APy = p P,
Thus, P =:'-'= 5
Py =3Py + S (pP, — 0Py =L P = Ap* Ry

g
Pn =3 B

125 A8 AD AD 15

def MM1(lambd,mu,k):
simulation_time = 380
mu = mu*k
ratio = lambd/mu

Initialize Parameters
qu = queue.Queue()
curr_process = None
simulation_gqu = []

T™n TR1-

service = []
arrival = []
wait time =
server_busy
list_wait = []
list_delay = []
served=g

[
= False
[

num_processes = int(np.random.poisson{lambd)* simulation_time)
num_processes_served = @
for i1 in range(num_processes):
temp = np.random.exponential(l/lambd)
i1f i==0:
simulation_gu.append(@)
else:
simulation_qu.append{int(temp - tempXl))

while not len(service) == num_processes:
temp = np.random.exponential({l/mu)
if not int{temp- temp¥1l)<1:
service.append(int(temp - tempXl))

service_copy = copy.deepcopy(service)

for 1 in range(num_processes):
if i == 8
arrival.append(8)
else:
arrival.append(arrival[i-1] + simulation_qu[i])
wait_time.append(@)

Simulation of M/M/1 Queue (i represents current time)
for 1 in range(simulation_time):
if server_busy:
for item in list(qu.queue):
wait_time[item] = wait_time[item] + 1
service[curr_process] = service[curr_process] - 1

if service[curr_process] == @:
server_busy = False
served+=1

num_processes_served = num_processes_served + 1

for j in range(num_processes):
if i== arrival[]j]:
qu.-put{j)

if not server_busy and not qu.empty():
curr_process = qu.get()
server_busy = True

Sum_wait = @
sum_delay = @

for i in range(num_processes_served):
sum_wait = sum_wait + wait_time[i]
sum_delay = sum_delay + wait_time[i] + service_copy[i]

if num_processes_served == 8:
list wait.append(@)
list_delay.append(@)
alse:
list wait.append(sum_wait/(num_processes_served))
list_delay.append(sum_delay/(num_processes_served))

Output Result

print ('MM1 Results: lambda = ¥1f, mu = %1€, k = %d' ¥ (lambd,mu,k))

print ('MM1 Average queue length: %d' % served)

print ('MM1 Average customer wait in queue:'+ str{sum(list_wait)/len{list wa
print ('MM1 Average customer delay in gueue:' + str(sum(list_delay)/len(list
return list_delay,simulation_time

Aalav eim = MM1{f1 2 2%

plt.plot([i+1 for i in range(sim)], delay)

plt.ylabel("Avg Queuing delay (sec)")

plt.xlabel("Simulation Time")

plt.suptitle('MM1 delay time with simulation time', fontsize=12)
plt.show()

MM1 Results: lambda = 1.8866868, mu = 6.8088008, k = 3
MM1 Average queue length: 299

MM1 Average customer walt in queue:8.28171@46788778683
MM1 Average customer delay in gqueue:®,.2916771344743727

MM1 delay time with simulation time

Avg Queuing delay (sec)

10

00 150 200 %0 300
Simulation Time

ﬂ._
]

The validation of the average delay computed

Equilibrium analysis

» We want to obtain P(n) = the probability of being in state n
« At equilibrium A P(n) = pPln+ 1) foralln
= Local balance equations between two states (n.n + 1)
= P+ 1) = {%:Pcn; = pP(n).p =ﬁ
« |t follows: P(n) = p" P(()
= By axiom of probability

- £, P(n) = |
o IZ,0"P(0) = fracP()l —p =1
s PO)=1-p
s Pmy=p"(1-p)

Average number of customers in the system

P A
N=Z2 1Pn)=Z%_np"(1 = p)=——=
where N = Average number of customers in the system. In this case n_i| = % =0.2125431

Average customer wait in queue

The average amount of time that a customer spends in the system can be obtained from Little's
formula (N =T =T = —’;l}

In this case ﬁ 202817104

Average customer delay in queue

T includes the queueing delay plus the service time (Service time = Dpp = &). W =amount of

time spent in queve =T — —:.

In this case —— —

L
o i =0.2916771

Average gueue size

The average number of customers in the buffer can be obtained from little's formula

T .

H—A u

InthcaseRDﬂ-%-élQ@

In [17]: wu = 180.8 / &0
ratios = [u / 18.8 for u in range(l, 11)]
avgdelay = []
for ro in ratios:
delay,sim= MM1{mu*ro, mu, 1)
avgdelay.append{sum(delay)/len(delay)/188)
plt.plot(ratios, avgdelay)
plt.xlabel('Ratio”)
plt.ylabel('Avg Queuing delay (sec)’)
plt.suptitle('MM1 with different lambda', fontsize=12)
plt.show()

MM1 Results: lambda = 8.166667, mu = 1.666667, k =1
MM1 Average gqueue length: @

MM1 Average customer walt in queue:8.8

MM1 Average customer delay in queue:8.8

MM1 Results: lambda = ©.333333, mu = 1.666667, k =1
MMl Average gueue length: @

MM1 Average customer walt in queue:8.8

MM1 Average customer delay in queue:8.8

MM1 Results: lambda = @.586888, mu = 1.666667, k = 1
MM1 Average gqueue length: @

MM1 Average customer walt in queue:g.g

MM1 Average customer delay in gqueue:8.8

MM1 Results: lambda = @.666667, mu = 1.666667, kK = 1
MMl Average gueue length: @

MM1 Average customer walt in queue:;8.8

MM1 Average customer delay in queue:8.8

MM1 Results: lambda = 8.833333, mu = 1.666667, k =1
MM1 Average gqueue length: 239

MM1 Average customer wait in queue:;8.13716155151389758
MM1 Average customer delay in gueue:®.1493398989137973
MM1 Results: lambda = 1.086888, mu = 1.666667, k = 1
MM1 Average gueue length: @

MM1 Average customer walt in queue:8.8

MM1 Average customer delay in gqueue:8.8@

MM1 Results: lambda = 1.166667, mu = 1.666667, K =1
MM1 Average gqueue length: @

MM1 Average customer walt in queue:8.8

MM1 Average customer delay in queue:8.8

MM1 Results: lambda = 1.333333, mu = 1.666667, k =1
MMl Average gqueue length: 243

MM1 Average customer walt in queue:8.4818189782642885
MM1 Average customer delay in gueue:®.4931651759766524
MM1 Results: lambda = 1.5668668, mu = 1.666667, k = 1
MMl Average gueue length: @

MM1 Average customer walt in queue:8.8

MM1 Average customer delay in gqueue:8.8

MM1 Results: lambda = 1.666667, mu = 1.666667, k = 1
MMl Average gqueue length: 255

MM1 Average customer walt in queue:8.5424437181859363
MM1 Average customer delay in gqueue:8.554884189474754

MM1 with different lambda

a5
o4
03

02

011 f/N\

Avg Queuing delay (sec)

In [8@]:

0a 10

wl—s V]

Ratio

MM1 with different A

As we can see In the graphe. The Queuing delay is roughly positively related fo average Queuing
delay. The relation fluctuates during the range of (L8 — |, which is in accordance to the previous
induction.

On average, the Queing delay is lager than (0.2,

3. M-M-k(m) Queue Simulation

__"*-‘

W
A packet per second —— | | | -~ M servers
T, u packet per

-_’/ second, per

server

An M/M/k queue is a stochastic process whose state space is the set [0, 1. 2. 3.... | where
the value corresponds to the number of customers in the systemn, including any currently in
service.

Arrivals occur at rate A according to a Poisson process and move the process from state i to

i + 1. Service times have an exponential distribution with parameter . If there are fewer than ¢
jobs, some of the servers will be idie. If there are more than ¢ jobs, the jobs gqueue in a buffer. The
buffer is of infinite size, so there is no limit on the number of customers it can contain. The model
can be described as a continuous time Markov chain with transition rate matrix.

« Departure rate is proportional o the number of servers in use

1—1 W A AS AS /?»%
ofofe
Lo 2ué6 3uod mud mud

+ Balance equations:
s hPin—1)=nuPinin <m
e« LPin=1)=mpPinin=>m

i
pm=d S ASm L
. ny= . p=-=—=<
O™)
HMl.n" > m Hi

def MMK(lambd,mu,k):
Simulation Time
simulation_time = 380
simclock=@
Customers=[]

last_k_Customer = []
while simclock<simulation_time:
if len(Customers)<=k:
arrival_time=random.expovariate(lambd)
service start_time=arrival time
else:
carrival_time+=random.expovariate(lambd)
“k_customer = last_k_Customer[len(last_k_Customer)-k:]
“service start_time=max(arrival time,min(k_customer))

service_time = random.expovariate(mu)
end_time = service_start_time + service_time
last_k Customer.append(end_time)

Add new Customer
if arrival_time <=simulation_time and end_time <= simulation_time:
Customers.append({Customer(arrival_time,service start_time,service ti

Increment clock till next enhd of service
if arrival_time <= simulation_time:
simclock=arrival_time
else:
simclock = simulation time

Waits=[a.wait for a in Customers]
avegQdelay=sum{Waits)/len(Waits)

served = len{Customers)

Total_Times = [a.wait+a.service time for a in Customers]
Mean_Time = sum({Total_Times)/len(Total_Times)

avgQlength = (Mean_Time/float(simclock)) * served
Service_Times=[a.service_time for a in Customers]

if sum(Service_Times) »= simclock:
util = 1

else:
util=sum{Service Times)/simclock

Output Result

print ('MMk Results: lambda = %1f, mu = %1f, k = %d' % (lambd,mu,k})
print ('MMk Total customer served: %¥d' % served)

print ('MMk Average gueue length: X1f' % avgQlength)

print (' 'MMk Average customer delay in queue: X1f' % aveQdelay)
return avgQdelay

In [24]: MMK(5.e/6@, B.8/6@,1)

MMk Results: lambda = ©.883333, mu = B.133333, k =1
MMk Total customer served: 28
MMk Average queue length: 2.296489
MMk Average customer delay in queue: 22.983719
MMk Time-average server utility: 8.769494
In [25]: MMK(1,2,1)
MMk Results: lambda = 1.008668, mu = 2.888080, k = 1
MMk Total customer served: 337
MMk Average queue length: 1.188553
MMk Average customer delay in queue: 8,489263
MMk Time-averape server utility: @.558947
In [87]: MMK(1,2,3)
MMk Results: lambda = 1.ee8868, mu = 2.8eeeeg, k = 3

MMk Total customer served: 291

MMk Average gqueue length: @.528516

MMk Average customer delay in queue: 8,.882461
MMk Time-average server utility: @.518129

The validation of the average delay computed

Equilibrium analysis

» The underlying Markov chain is again a birth-death processwith iy, = A fork =0,1.2 ...

kuy D<k<m
andm:{m'{; k>m

sm-1 (mp)" (mp)™

_ =1
POy = [T, o m!“_p}]

In [93]:

P(O)mpy™

mll — p)
A e 3
0.5 YT

Pp = I3 P(n) =

+

thl

In this case, we have P(0) = (+

Average customer wait in queue

Apply the equation W = amount of time spent in queue =T — 1j

T= W+—l
H

Average customer delay in queue
Average customer delay can be defined as .

No

A
In this case (0L001/0.3 = 0.003333 0.002461

Average queue size

The average number of customers in the buffer can be obtained from little's formula
No = X5 nP(n+m) = Po(£

In this case 300 = %;29!

mu = 1888.8 / 6@
ratios = [u / 18.2 for u in range(l, 11)]
avedelay = []

W e e e

MMk Average gueue length: 8.688825

MMk Average customer delay in gueue: ©.228208

MMl Results: lambda = 11.666667, mu = 16.666667, k = 7
MMk Total customer served: 3483

MMk Average gqueue length: 6.715298

MMk Average customer delay in gqueue: 8.eceeee

MMk Results: lambda = 13.333333, mu = 16.666667, k = 8
MMk Total customer served: 3976

MMk Average queue lenpth: @.784441

MMk Average customer delay in gqueue: @.epgepe

MMk Results: lambda = 15.866888, mu = 16.666667, k = 9
MMk Total customer served: 4598

MMk Average queue length: 6.911744

MMk Average customer delay in gqueue: @.eeeese

MMk Results: lambda = 16.666667, mu = 16.666667, k
MMk Total customer served: 5839

MMk Average gqueue length: 1.e8leds6

MMk Average customer delay in gqueue: @.022202

1@

MMEK with diffrent k

5 8 8 &8

Avg Queuing delay (s&c)

g

:

02 04 06 08 10
Ratio

MMK with different k

As we can see In the graph. The Queding delay is negatively related to average Queuing delay.
The trend drop sharply during the range of (0 — (0.2, which is in accordance to the previous
induction.

On average, the Queing delay is lager than 0.001.

lll. Comparison between three Simulations

Admittedly, we have the limitation for just controlling the variable of poisson process for
emulating the customer flow. The overall simulation is convincible and validated by the theororm
induction.

In terms of the average delay time, we can jump to the conclution that M-M-k gueue is the best
strategy among three, not only for the lower delay time, but also for its algorithm's stability.

Reflection on the difference between M-M-k and M-M-1

We notice thal, for some parameters, we have M-M-1 over-performance the previous one. We
can figure it out from the graph above,

« Bank with m tellers
« Metwork with parallel transmission lines

m lines, each of rate i

Use
Nod Vi Nod
A —s GAE ol . M/Mm
7 B
formula

ArQ

In [1e2]:

¥ 5
One line of rate mu

Use
A NUAde N(];de MM/
formula

When the system is lightly loaded, Fp 0, and Single server is m times faster When system is
heavily loaded, queueing delay dominates and systems are roughly the same

IV. The State of Art

From the paper [4], we can add a traffic equation to make noise in A, such as:
Aoy + (1 — [EEE_GD]H =4 < M

Assuming a FIFO service discipline, we can approximate delay as [~ Exponential(p — A).
Moticing that the expected recall rate is the moment-generating function for D,

-4
E[e*P"] = H
[] p—A+0
Plugging this expression into the traffic equation,
p=A+0
'i T e "lexf { lu

"= 4

import numpy as np
from collections import defaultdict, Counter
T = 10668
theta = 8.81
arrival _rate = 8.2
service_rate = 8.4
using_clocked_delays = True
using_fifo = True
using balking = False
flow_rate = (service_rate + arrival_rate - np.sgrt({service_rate + arrival_rate)
expected_recall_rate = (service rate - flow_rate) / (service_rate - flow_rate +
feedback_threshold = np.log(service_rate / arrival_rate) / np.log(l + theta / se
q = queue.Queus()
exits = []
delays = []
initiolize gueue with some items
size = int(np.log(service rate / arrival_rate) / np.log(l + theta f service_rate
iits = np.random.exponential(l / (arrival_rate + service_rate), size) # inter-ar
t = =sum{iits)
for iit in iits:
t += iit
q.put(t)
size = @
sizes = [size]
t=0
outcomes_at_queue_size = defaultdict(list)
for _ in range(T):
t += np.random.exponential(l / (arrival_rate + service_rate))
if np.random.random{) < arrival_rate [/ (arrival_rate + service rate) and (no
q.put{t)
size += 1
elif not g.empty():
if using clocked delays:
delay = t - g.get()
else:
q.get()
delay = np.random.exponential(l / (service_rate - flow_rate))
delays.append{delay)
if np.random.random() < np.exp(-theta*delay):
outcomes_at_queue_size[size].append(1)
exits.append(t)
sjize -= 1
elif True:
outcomes at gueue sizel[sizel.append(@)

Jfopt/anaconda3/envs/my-rdkit-env/1ib/python3.6/site-packages/numpy/core/_method
s.py:161: RuntimeWarning: invalid value encountered in double scalars

ret = ret.dtype.type(ret / rcount)
Jopt/anaconda3/envs/my-rdkit-env/1ib/python3.6/site-packages/numpy/core/_method
5.py:217: RuntimeWarning: Degrees of freedom <= @ for slice

keepdims=keepdims)
fopt/anaconda3/envs/my-rdkit-env/1lib/python3.6/site-packages/numpy/core/_method
s.py:186: RuntimeWarning: invalid value encountered in true divide

arrmean, rcount, out=arrmean, casting='unsafe’, subok=False)
fopt/anaconda3/envs/my-rdkit-env/1ib/python3.6/site-packages/numpy/core/_method
5.py:289: RuntimeWarning: invalid wvalue encountered in double_scalars

ret = ret.dtype.type(ret / rcount)

0.200 —_— A1 -

1
0175 |I — Al =m*¥)
0150 | — Al -m)

0125 Smulated

0100
0.075

0050

Throughput As

0025

n.ooo

o 50 100 150 200 %0
Upper Bound on Queue Size k

In [183]: num reps = 5
init_sizes = range(int(2 * feedback_threshold))
summ_sizes = [[] for _ in init_sizes]

for init_size_idx, init_size in enumerate(init_sizes):
for _ in range(num_reps):
q = queue.Queue()

size = init_size
iits = np.random.exponential(l / (arrival_rate + service_rate), sirze)

t = -sum{iits)
for iit in iits:
t += iit
q.put(t)

sizes = [size]

=g
for _ in range(T):
t += np.random.exponential(l / (arrival_rate + service_rate)})
if np.random.random() < arrival_rate / (arrival_rate + service_rate)
g.put({t)
size += 1
elif not g.empty():
if np.random.random() < np.exp(-theta*(t - q.get()}):
size -= 1
else:
q.put{t)

sizes.append{size)

summ_sizes[init_size_ idx].append((np.max{sizes), np.min{sizes)))
plt.xlabel('Initial Queue Size (Number of Items)')
plt.ylabel(Extinction Probability’)
plt.errorbar(init_sizes, [np.mean([1 if z[1] == @ else @ for 2z in x]) for x in s

plt.axvline(x=feedback_threshold, linestyle='--', label='Feedback Threshold')
plt.legend(loc="best")
plt.show()

d]

10 i\ === Feedback Threshold
)
]

0B |

06 1l

‘obability

In [184]:

o [}

02

Extinction P1

oo

A ————

4] 10 20 0 &0 50
Initial Queue Size (Number of Items)

plt.xlabel('Simulated Delay")
plt.ylabel('Frequency (Mumber of Interactions)')
plt.hist(delays, bins=28, linewidth=8, alpha=8.5)
plt.show()

2000
B 1750 4
. 1500 1
= 1250 1
¥ 1000 1
750 1

500 1

Frequency (Numi

50 4

0 T T T
0 x 40 60 B0
Simulated Delay

This paper is more similar to the human learning, which make more tailored to the real world
application,

V. Reference

1. M/DI1_gqueue
2. MIT Data communication fa02 Lec5&6
3. CSDN

4. leltnerg

