
Reinforcement Learning: Final Project
Due on July 1, 2020 at 11:59pm

Professor Ziyu Shao

Yiwei Yang

2018533218

1

Yiwei Yang Reinforcement Learning (Professor Ziyu Shao): Final Project Problem 1

Problem 1

1. I’m currently a sophomore at CS major, having a deepmind to build something with Reinforcement

Learning(RL) to make a world better place. For now, my interst focus on HFT and UAVs. Those

territory can smoothly apply the RL thoughts by applying competetive MDP on reward updates by

the surrounding environment. In the field of Control Systems, admittedly we have useful tools such as

PID controllers. In my sense, if I wanted to make an agent to do certain movements to complete tasks,

I’ll apply PID, while if I wanted to make an agent to control a plane to shoot an certain targets, RL

is better. So, RL really add a brilliant touch to the traditional automation Fields.

2. To make a conclusion to the course , I think SI252 RL really takes me into the door of exploration and

exploitation. That’s not only an outlook on life, but also a profound strategy to conquer the economics

problems. However, during my research and study on Probability, Statistics, Stochastic Process, I

self-studied a lot on how to utiliaze the language python to generate the RL code. I relearnt some of

the Graph theory, Cryptography and Game thoery to get full understanding of a practical scenario.

3. For the shorts of the class:

(a) More originated resources and more equation deduction.

(b) Can add more talks on the Deep RL, because the balance between the math basics and the depth

of the RL scenario is not well-considered.

Problem 2

The maximal-cut (max-cut) problem in a graph , as discussed in Goemans and Williamson (1995) Zhou et al.

(2018), can be formulated as follows. Given a graph G = G(V,E) with a set of nodes V = {v1, . . . , vn} , a set

of edges E between the nodes, and a weight function on the edges, c : E → R. The problem is to partition

the nodes into two subsets V1 and V2 such that the sum of the weights cij of the edges going from one subset

to the other is maximized:

max


∑
vi∈V1
vj∈V2

cij : V1 ∪ V2 = V, V1 ∩ V2 = ∅


x = (x1, . . . , xn) , where xi = 1 if node vi belongs to same partition as v1, and xi = 0 else. For each cut

vector x, let {V1(x), V2(x)} be the partition of V induced by x, such that V1(x) contains the set of nodes

{vi : xi = 1} . Unless stated otherwise, we let v1 ∈ V1 (thus, x1 = 1)

Let X be the set of all cut vectors x = (1, x2, . . . , xn) and let S(x) be the corresponding cost of the cut.

Then,

S(x) =
∑

vi∈V1(x)

vj∈V2(x)

cij

When we do not specify, we assume that the graph is undirected. However, when we deal with a directed

graph, the cost of a cut {V1, V2} includes both the cost of the edges from V1 to V2 and from V2 to V1. In this

case, the cost corresponding to a cut vector x is, therefore,

S(x) =
∑

vi∈V1(x)

vj∈V2(x)

(cij + cji)

1. From of Science (2012) Dunning et al. (2018)’ work, the gibbs sampling which is one part of the MCMC

best fit the max cut problem.

Problem 2 continued on next page. . . 2

Yiwei Yang Reinforcement Learning (Professor Ziyu Shao): Final Project Problem 2 (continued)

(a) Start with µ0 = x and δ0 =
(
δ0
1 , . . . , δ

0
p

)T
. Set i = 1

(b) Sample
(
Σ−1

)i
from the Wishart distribution with scale matrix

(
Sf + S + n

(
xf − µi−1

)
(xf−

µi−1
)T)−1

and v = n+ 2t+ p+ 1 = N + n− 1 degrees of freedom.

(c) Sample µi from a normal distribution with mean gδi−1,Σl =
(

Ψ−1
δi−1 + n

(
Σ−1

)i)−1 (
ψ−1
δi−1θδi−1+

n
(
Σ−1

)i
xf

)
, and covariance matrix Vsi−1,Σi =

(
ψ−1
si−1 + n

(
Σ−1

)i)−1

(d) Define δij(r) =
(
δi1, . . . , δ

i
j−1, r, δ

i−1
j+1, . . . , δ

i−1
p

)T
. For j = 1, . . . , p, sample δij from the discrete

distribution: p(r) =

∣∣∣∣ψsi
j
(r)

∣∣∣∣− 1
2

exp

{
− 1

2

(
µi−θδ′

j
(r)

)T
ψ−1

δi
j
(r)

(
µi−θs′

j
(r)

)}
p(δij(r))

∑1
q=−1

∣∣∣∣ψδi
j
(q)

∣∣∣∣− 1
2

exp

{
− 1

2

(
µi−θ

δi
j
(q)

)T
ψ−1

δi
j
(q)

(
µi−θ

δi
j
(q)

)}
p(δij(q))

, r ∈ {1}

2. The cross entropy method can be generally depicted as by Rubinstein and Kroese (2013):

(a) First, cast the original optimization problem of S(x) into an associated rare-events estimation

problem: the estimation of

` = P (S(X) ≥ γ) = EI{S(X)≥γ}

(b) Second, formulate a parameterized random mechanism to generate objects X ∈ X. Then, iterate

the following steps:

i. Generate a random sample of objects X1, . . . , XN ∈ X(e.g. cut vectors.)

ii. Update the parameters of the random mechanism (obtained via CE minimization), in order

to produce a better sample in the next iteration.

iii. Generation of cut vectors: The most natural and easiest way to generate the cut vectors

is to let X2, . . . , Xn be independent Bernoulli random variables with success probabilities

p2, . . . , pn

iv. Updating formulas: From CE minimization: the updated probabilities are the maximum

likelihood estimates of the ρN best samples:

p̂t,j =

∑N
i=1 I{S(Xi)≥γ̂t}I{Xij=1}∑N

i=1 I{S(Xi)≥γ̂t}
, j = 2, . . . , n

Formally, the algorithm can be written as:

3. Basic MCTS has the following procedures:

(a) Select

It is to select a node, at first, only the root node, no child nodes can be selected then skip to the

next step, expand If there are child nodes, choose one based on a sample of the value of the child

nodes, and then see if there are any child nodes left in the chosen one , if any, continue down the

selection until you reach the leaf node. Then proceed to the next step.

(b) Expand

Once you have selected the leaf node, you can expand it to expand the children of the leaf node,

either one or the other Multiple, depending on the situation. For example, the familiar alpha dog

algorithm expands all the child nodes each time, and then gives each child a probability based on

the neural network output Node assignment a priori probability, not much to say here, interested

to understand the Alpha Dog paper. The normal MCTS, which is more common to expand one, is

not essentially that different, because we record whether the node has been fully Expanded, nodes

that are not fully expanded will continue to be expanded in the next simulation, so essentially

there is little difference between expanding one and multiple as it will mostly unfold eventually.

Problem 2 continued on next page. . . 3

Yiwei Yang Reinforcement Learning (Professor Ziyu Shao): Final Project Problem 2 (continued)

Algorithm 1 Cross Entropy Method on the Max-cut Problem

Input cost matrix C;

Initialize p̂0 = (1/2, . . . , 1/2), p[1] = 1, eps = 10−3, Ne = 10;

for max(min(p, 1− p)) > eps do

x = (rand(N,D) < ones (N, 1) ∗ p);
SX = S(x);

sortSX = sortrows([xSX],m+ 1);

p = mean(sort SX(N −Ne +1 : N, 1 : m))

end for

function S(x)

N = size(x, 1);

for i = 1 to N do

V 1 = find(x(i, :));

V 2 = find(x(i, :));

end for

perf(i, 1) = sum(sum(C(V 1, V 2)));

Figure 1: After estimating the reward of the expanded node, we iteratively update the rewards of its

ancestors.

(c) Simulation

This is one of the more important steps in MCTS, and depending on a strategy, a random strategy

usually works very well, borrowing from the Alpha Dog first author David Silver’s quote from an

intensive learning course at the University of London: don’t assume random strategies is a very

bad strategy, and it can often yield very good results. So here we generally just use a random

strategy, starting with the leaf node we just expanded and simulating it until the end of the game.

What exactly does that mean? It is from this leaf node situation that the game begins, with

both players randomly landing from available spots until the game is won or lost, and this win

or lost The outcome of the situation is to some extent a reflection of the situation, and if you

win, you can at least have the kind of fallout to win once Isn’t it, and of course we can imagine

that this result is very unreliable, after all, random drop-offs are, in fact, really unreliable. But

the advantage is that it’s fast, and we can simulate it many times, thousands of times, so that

even if it’s random, if most of them win It’s also enough to say that the situation is winnable, so

essentially MCTS is an algorithm that approximates probability with frequency.

(d) Backup After simulating the win-loss result in the previous step, this result is 1, representing a

win-loss draw, and then the result is returned. Update the value of the node on this path. For a

concrete example, say the simulation results in a win, which is 1, then add 1 to the value of that

leaf node in step 2. Of course there are other values that need to be updated, such as the number

of selections should also be added by 1, and then the value of its parent node should be added

Problem 2 continued on next page. . . 4

Yiwei Yang Reinforcement Learning (Professor Ziyu Shao): Final Project Problem 2 (continued)

by -1 because it is The game is a win for the opponent, a loss for yourself, so take the opposite

number, then the parent node is plus 1, and so on recursively to the root node to update the

values of the nodes on the entire path.

The algorithm can be described as followed:

Algorithm 2 MCTS Method on the Max-cut Problem

Require Network fθ ,root node s0

Ensure Return π, Enhanced Policy

for
∑
a∈As0

N (s0, a) ≤ citer |As0 | do
s = s0;

{select};
for s is expanded before and s /∈ Send do

a = argmax
b∈An

(
Q(s, b) + cpuct P (s, b)

√∑
b′ N(s,b′)

1+N(s,b)

)
;

s← T (s, a);

end for

{expand}
if s /∈ Send then

(p, v) = fθ(s);

initialize (N(s, a) = 0,W (s, a) = 0, Q(s, a) = 0, P (s, a) = pa) for each a ∈ As
calculate (µs, σs) by random sampling

end if

{backup}
r = restim(s);

for s is not s0 do

a = previous action s← parent of s r ← r +R(s, a)

r′ = (r − µs) /σs
W (s, a)←W (s, a) + r′

N(s, a)← N(s, a) + 1

Q(s, a)← W (s,a)
N(s,a)

end for

end for

Compute
(
πa = N(s0,a)1/τ∑

bN(s0,b)
1/τ

)
for each a

return π

4. Pros and Cons of the method:

All of those heurisitic algorithm is just the trade of the exploitation

(a) For MCMC, the search method of maxcut is very similar to those in the queuing problem. The

only difference is the reward and the live- death problem. So, those kind of problem can done by

each transition updates a single variable of the sample(Gibbs Sampling). By this way, MCMC

is scalable to be deployed on many questions and solve them without knowing the principles.

However, combinatorial optimization often has a set of possible values for a variable can beseverely

restricted by the value of others. Hence, the set of possible values for a variable can beseverely

restricted by the value of others. At times,no single variable update is possible without violatingthe

constraints, thus rendering the underlying Markovchain non-ergodic. Just like the C MCMC case

in solving maxcut, it stuck to local optimal value.

(b) For CEM When adding experiments, the CE program will not obtain a better estimate of the cut

by increasing the number of iterations, because it is not possible to obtain a better estimate of the

Problem 2 continued on next page. . . 5

Yiwei Yang Reinforcement Learning (Professor Ziyu Shao): Final Project Problem 2 (continued)

cut for a program with fixed The CE program with the number of samples is iteratively updated

with the probabilistic parameter p as it reaches the optimal solution. The density of probability

distributions describing the pattern of variables should be concentrated on the optimal solution,

i.e., however randomly the samples are generated, The samples are all optimal solutions to the

objective function, but due to the limited number of samples, the solution obtained by the CE

program is This is only a partial optimal solution, so when the CE program obtains this partial

optimal solution during the iteration, the CE program will not be able to solve the problem even

if it is repeated. Increasing the number of iterations will not produce a better solution and the

output will always be the same. This means that too many iterations of the CE program are not

necessary.

(c) MCTS actually has a bunch of algorithm. The naive one is to use UCB1 to update the value

function and then do back-play. In my test, MCTS is the faster than MCMC which manifest

its profermance, slower than CE which implies it requires more information from the graph to

update. Besides, we have Abe et al. (2019) using AlphaZero to solve the probblem which I didn’t

have the time to reproduce. The AlphaZero’s self-play can be deployed on many models, which

is very versatile and specific, but time consuming.

Problem 3

1. I have an apple(RL), I have an pen(DL), combine it, we get applepen(DQN) in Mnih et al. (2015).

(a) Problem: how to perform Reinforcement Learning Reinforcement in high dimensional input sit-

uations. For example, in the game Atari, how to make the machine learn to control the target

to make the game score the most points. The paper treats playing games as intelligences agent

through a series of actions, observations, and The reward interacts with the environment (in this

case, the Atari simulator). The internal state of the simulator is not available to the agent; the

agent only gets the game screen and the corresponding score. Obviously the current state is not

only dependent on the current game screen, but also on previous states and actions. The agent

can use this to learn how to play the game, i.e. how to choose the current action that will result

in the highest efficiency score in the future. In the Loss Function of the Q-network, we have

+θiL (θi) = Ek,a,r,s′
[(
r + γmaxd′ Q

(
s′, a′; θ−i

)
−Q (s, a; θi)

)
+ θiQ (s, a; θi)

]
which can be solve

by SGD or other DL methods. This kind of optimization’s feature is model-free, since it is not

fixed explicitly; also off-policy, ε- The greedy strategy lets ε fall linearly from 1 to 0.1 for the first

1 million times, and then stays constant at 0.1. The decay parameter is ε and the selection action

parameter is 1 - ε. This starts out with a random search for Q updates and then slowly Use the

optimal method.

(b) Traditional procedures:

i. Handcrafted features, i.e. manually extracted features (e.g. background modeling in the

game). (extracting the target location);

ii. using linear value equations or strategies for characterization.

Due to the lack of robustness of manually extracted features, the performance of traditional

methods depends mainly on how well the features are extracted; additionally, linear value The

equations cannot simulate the nonlinearity in reality well.

(c) Possible solution: The Deep-Q-Network proposed in this paper can solve the above problems, i.e.,

CNN + Q-Network. Learning = Deep Q Network is specifically a combination of convolutional

neural networks and Q Learning is combined. The input to the convolutional neural network is

the raw image data (as state) and the output is the value value corresponding to each action.

Problem 3 continued on next page. . . 6

Yiwei Yang Reinforcement Learning (Professor Ziyu Shao): Final Project Problem 3 (continued)

Function to estimate future feedback Reward. i.e., use CNN to fit the optimal action valuation

function (optimal action-value function).

(d) Technical Details(Steps):

i. Pre-processing of images

ii. When encoding the image, the image pixel is the maximum of the image pixel to be encoded

and the image pixel of the previous frame, this is to eliminate the flickering phenomenon.

Take the grayscale value of the RGB image, and resize to 84*84, take 4 frames (k=4 is the

most robust) as input.

iii. Model architecture

Previous methods of deriving Q values used historical information and actions as input, which

resulted in a Q value to be calculated for each action and computationally inefficient; the paper

has only state as an input and the output is an estimate of the value of Q corresponding to

each action, such that in the When calculating the Q values for different actions in a certain

state, you only need to calculate the network forward once. The model is as follows

Figure 2: Graph Labeled for DGN network

iv. Details of the model

A. The previous approach uses different models for different games, the paper trains with only

one model (based on a small amount of a priori knowledge, such as input images, game

action types, number of lives, etc.), indicating that the paper’s model is generalizable.

B. The rewards of the different games are normalized to 1 for positive, -1 for negative, and 0

for others. ratio and can be used to train different games using a uniform training speed.

C. Because of the large amount of training data and high redundancy or repetition, training

with the RMSProp algorithm. The gradient descends by a look at the direction and a

look at the step length, here using Divide the gradient by a running average of its recent

magnitude. by introducing a decay coefficient ε such that the reward decays by a certain

percentage each round. ε-greedy strategy makes ε preceded by 1 Millions of times linearly

decreases from 1 to 0.1 and then stays constant at 0.1. This starts off with a random

search for Q-value updates and then slowly uses the optimal method later. This approach

is a good solution to the problem of premature endings in deep learning and is suitable

for dealing with non-stationary targets, but introduces new parameters. The attenuation

coefficient, ρ, still depends on the global learning rate.

Problem 3 continued on next page. . . 7

Yiwei Yang Reinforcement Learning (Professor Ziyu Shao): Final Project Problem 3 (continued)

D. The reason for skipping four frames for all games is that it is more efficient to compute

without affecting the result too much.

v. Algorithm

Algorithm 3 Deep Q-learning with experience replay.

Initialize replay memory D to capacity N

Initialize action-value function Q with random weights θ

Initialize target action-value function Q̂ with weights θ− = θ

for epispde = 1 toM do

Initialize sequence s1 = {x1} and preprocessed sequence φ1 = φ (s1)

for t = 1 to T do

With probability ε select a random action at otherwise select at = argmaxaQ (φ (st) , a; θ)

Execute action at in emulator and observe reward rt and image xt+1

Set st+1 = st, at, xt+1 and preprocess φt+1 = φ (st+1)

Store transition (φt, at, rt, φt+1) in D

Sample random minibatch of transitions (φj , aj , rj , φj+1) from D

Set yj =

{
rj if episode terminates at step j + 1

rj + γmaxα′ Q̂ (φj+1, a
′; θ−) otherwise

Perform a gradient descent step on (yj −Q (φj , aj ; θ))
2

with respect to the network parameters θ

Every C steps reset Q̂ = Q

end for

end for

(e) Experiments Result

i. As discussed in the previous work in Mikolov et al. (2013), they applied the algorithm to the

Atari 2600 game, 6 out of 7 games tested exceeded the previous method and several exceeded

the human level. In this paper they applied the algorithm to Atari 2600 games, 49 of them

exceeded the human level, mainly because of the Fixed target Q-network change.

ii. The figure below shows that the training reward and the forecast of the reward fluctuate a lot,

with very small changes in weights This can lead to dramatic changes in scores and strategy

output. On the other hand, the variation in average Q is stable because the maximum value

of Q is used in each Target calculation.

Figure 3: Result for DGN network

iii. Using the t-SNE algorithm to visualize high-dimensional data, showing the last hidden layer

of the DQN to Square Enix Limited is an example of how similar states will be placed in close

Problem 3 continued on next page. . . 8

Yiwei Yang Reinforcement Learning (Professor Ziyu Shao): Final Project Problem 3 (continued)

proximity to each other. Sometimes the states may not be similar, but the desired rewards

are similar (bottom half of Figure 3). The conclusion drawn is that the DQN network is able

to learn from the high-dimensional raw input to support the representation of the adaptable

rules.

(f) Summary of papers and future work

In this paper, DQN is used to solve the problem of game manipulation under high-dimensional

image input.

i. The advantages of DQN are as follows.

A. Algorithms are more universal, the same network can learn different games (for different

Atari games)

B. Adopt end-to-end training method, no need to manually extract Feature, use CNN instead

of handcrafted features. Use a fixed length of historical data, such as 4 frames of images

as a state input. Solve the problem that deep learning inputs must be of fixed length.

C. Using reward to construct labels through continuous test training, endless samples can

be generated in real time for supervised learning.

D. through the experience replay method to solve the correlation and non-static distribution

problems. That is, to establish a pool of experience, the experience of each time are

stored, to train when the time to randomly take out a sample training.

E. The choice of action is based on the conventional ε-greedy policy. That is, the random

action is chosen with small probability, and the random action is chosen with large prob-

ability. Probability selects the optimal action.

ii. The disadvantages of DQN are as follows.

A. Since the state of the input is short term, it is only suitable for dealing with problems

that require only short term memory, and cannot deal with problems that require long

term experience.

B. Using CNN to train may not necessarily converge, and requires fine settings of the net-

work’s parameters. (For example, I am doing target detection in my current project, using

the model trained in imagenet as a pre-initialized network) parameters, which makes CNN

making convergence not too difficult, and the paper is manually configuring CNN from

scratch. (Also the Loss function is more complex.)

C. Because physical memory is limited, only N experiences are stored in the experience pool,

the limitation of this method is that this experience pool doesn’t distinguish between

important transfer transitions, it always overwrites the latest transitions.

D. The input image pixels are still very low, how to scale to future complex games.

iii. Directions for improvement.

A. Use LSTM or RNN to enhance network memorability.

B. Improve Q-Learning algorithms to improve network convergence.

C. Train using preferred experiences to improve performance. I.e., guided pool of experiences;

physically increase the capacity of stored data d.

D. Look for biological inspiration.

E. Changes in the structure of the CNN model need to be investigated, e.g. to see if the full

connectivity layer can be replaced and if some of the tricks trained in other deep learning

networks can be used here.

2. ”Deep learning is a type of machine learning, it’s a sophisticated assembly line where the whole pig is

driven in from this side and the sausage comes out from that side on the It’s okay.” Silver first come

up with MCTS algorithm to solve the Go Game in Silver et al. (2016), which defeats the Lee Seldo.

Problem 3 continued on next page. . . 9

Yiwei Yang Reinforcement Learning (Professor Ziyu Shao): Final Project Problem 3 (continued)

(a) Problem: the Deep Blue defeat the top player in Chess in 1995, but based on brute force search

so that the machine can easily defeat the people. When it comes to go, the search space of 391!

does not accept full search. A good cut for the search is necessary. The MCTS is the good way

to get optimal value in a limited time to converge.

(b) Some confusing ideas for researchers at that time:

i. Almost endless state space

ii. The MCTS tree search algorithm is invalid.

iii. The space for exploration must be narrowed.

iv. A human-like approach to chess.

(c) The most supprising contributions in this paper is applies MCTS and neural network on Go

strategy.

Figure 4: The basic procedures of the Alpha Go

i. This system, AlphaGo, consists of several main components.

A. policy network, to predict/sample the next move given the current position.

1. randomly picking a board (state/position) from the game

2. 30 million positions from the KGS Go Server (KGS is a Go website). Data is arguably

the core, so it’s still too early to say that AI has beaten humans, and AlphaGo is still

standing at the human The expert advances on his shoulder. The board is treated as a

19x19 black and white binary image, then with convolutional layers (13 layers). This is

better than the image. rectifier nonlinearities

3. Output all legal moves

4. raw input accuracy: 55.7%. all input features. 57.0%. Later methods have a mention

of exactly what features. A bit of Go knowledge is needed, e.g., liberties means gas.

Figure 5: the training accuracy of policy network

B. fast rollout, with the same objectives as 1, but at an appropriate sacrifice of quality, which

is 1000 times faster than 1.

Problem 3 continued on next page. . . 10

Yiwei Yang Reinforcement Learning (Professor Ziyu Shao): Final Project Problem 3 (continued)

1. Non-linear − > Linear

2. Local Features − > Full Board

Accuracy drops to 24.2%, but time 3ms-¿ 2µs. earlier MCTS mentioned the need to go

to the bottom of the assessment The advantage of speed is evident.

Figure 6: The feature of fast rollout policy

C. Policy Networks

1. The result of the preceding policy networks is taken as the initial value ρ = µ

2. Randomly selects the policy network from a previous round to duel against to reduce

overfitting.

3. zt = ±1is the final winner. After the winner is determined, the direction of the

gradient is optimized for each previous move, with a win increasing the predicted p and

a loss decreasing p. The final objective is the win, while the original SL Policy Networks

predicts the win.

4. The corrected final objective is the win, while the original SL Policy Networks predicts

The same accuracy as the EXPERT walk. So the duel result 80%+ wins SL. , given the

current situation, estimates whether a white or black win.

D. Value Network, given the current situation, estimates whether a white or black win.

Determine what the probability is that black or white will each win on a given surface,

so the only parameter is s. Of course, you can also enumerate a to get p(a|s). Of course,

you can also enumerate a and get p(a|s). The difference is that you know the relative

probability of winning for each side.

1. using policy p for both players (Difference RL Policy Network: Random in front) (A

P and the latest P vs.

2. vθ(s) ≈ vPρ(s) ≈ v∗(s) · v∗(s) is the fraction obtained by the theoretically optimal

lower method. It is obviously impossible to obtain, but only with our current strongest

Pρ algorithm to approximate. But this is not known until the end of the walk, so we have

to use Value Network vθ(s) to learn about it.

∆θ ∝ ∂vθ(s)

∂θ
(z − vθ(s))

(The above equation should be min(z − vθ(s))2
, and converting it to max removes the

negative sign of the derivation) Since the preceeding hyphen is strongly correlated, enter

Only one piece is different, z is the final result, which is always the same, so directly

counting like this will overfitting. The solution is to extract only the position from the

game. The solution is to extract only the position of the game, which actually generated

30 million distinct positions. that’s how many innings of game there are.

By add the value network, the MSE of teh trainingset and test set get close. And if

assembling the components as MCTS, the strength adds up.

Problem 3 continued on next page. . . 11

Yiwei Yang Reinforcement Learning (Professor Ziyu Shao): Final Project Problem 3 (continued)

Figure 7: The Components of the Alpha Go compared to others

E. The Monte Carlo Tree Search (MCTS), to put the These three parts are connected to

form a complete system.

Figure 8: The MCTS of Alpha Go

The choicde of MCTS Simulation:

at = arg max
a

(Q (st, a) + u (st, a))

= arg max
a

(
Q (st, a) + C ∗ Pσ

1 + Search TimesN(s, a)

)
, where V (θL) is the evaluated value of the leaf node and Q is the expected V (θL) after

many simulations. Interestingly, the experimental result λ = 0.5 is the best. V (θL) =

(1− λ)vθ (sL) + λzT , where vθ is value network, fast rollout go to end result zL
If you haven’t qqexpanded Q to 0 in the first place, then SL’s Pσ is prior It also reduces

the width of the search, and the average point score is very low. It is harder to be

SEECTED. Interesting conclusion, the comparison comes out better with SL than RL

here! SL results that mimic human chess moves are more suitable for MCTS search

because humans choose a diverse beam of promising moves. while RL’s learned is the

optimal lower method (whereas RL optimizes for the single best move). So mankind is

winning at this point for now! But on the other hand, RL learned value networks work

well for evaluation. So each has its own strengths.

N a lot of searches will deduct points, encourage exploration other branches.

ii. Experiment: They can have the professional level even with a single machine. Google is

willing to apply few thousands of machine to train for the competition with Lee Seldo, it will

of course win the game only to modify few vairables.

Problem 3 continued on next page. . . 12

Yiwei Yang Reinforcement Learning (Professor Ziyu Shao): Final Project Problem 3 (continued)

Figure 9: The Result of the Alpha Go

iii. Some method to come up to improve the processure.

A. When Alphago’s MCTS does rollout, it uses a fast walker as well as an existing search

tree. In part, it looks like AMAF/RAVE in reverse: AMAF is the information that

conducts the fast walker to other irrelevant parts of the tree. In part, Alphago is using

other unrelated parts of the tree to enhance fast moves. I doubt that this is one of the

reasons why it’s stronger than other DCNN+MCTS.

B. ”The better quality of rollout moves may lead to a decrease in chess power.”

There are two cases to distinguish here, tree policy and default policy. in the AlphaGo’s

article, the distribution of tree policy should not be too sharp, otherwise the search for

the If you pay too much attention to some seemingly good moves at times, you may lose

your power. But apart from this reason, in general it’s better to have a tree policy.

On the default policy side, i.e. (semi-)random moves to the end and then judging the

score, it’s more complicated and the quality gets better. All default policy needs to ensure

is that each piece is dead or alive in roughly the right way. Don’t play dead chess to live

or vice versa, but rather less demanding of the big picture. It is perfectly possible for

both sides to play each piece in tandem and then move on to another piece, rather than,

say, taking the lead elsewhere before the other side.

3. Silver et al. (2016) says by telling the machine only the basic rules of the game, but not Go tactics

such as stereotypes that humans have been fumbling with for thousands of years, let the Machines rely

entirely on self-learning to beat humans. The title is not only fresh, it’s hot.

(a) The core ideas: AlphaGo Zero differs from AlphaGo Fan and AlphaGo Lee. In the following

areas.

i. The first and most important point is that AlphaGo Zero only uses reinforcement learning

for training.AlphaGo Zero learns from the whiteboard, without using human supervised data,

and trains for reinforcement learning in a self-playing game.

ii. Second point: uses only Othello on the board as input features. No artificially designed

features of the Go domain are required.

iii. Third point: Use only a single neural network. No use of separate strategy and value networks.

iv. Fourth point: Use a simple tree search that relies only on a single neural network as described

above, and perform both board situation evaluation and Move Move Selection. Monte Carlo

Rollouts (Rollout Policy in AlphaGo) is abandoned.

To achieve these goals, this paper develops a new reinforcement learning training algorithm that

incorporates Monte Carlo tree search trees into the training phase. The new algorithm results in

faster performance improvement and more accurate and stable learning.

(b) Technical details:

Problem 3 continued on next page. . . 13

Yiwei Yang Reinforcement Learning (Professor Ziyu Shao): Final Project Problem 3 (continued)

i. Policy Iteration:

A. Network structure: deep residual neural network fθ, parameter θ. Each convolutional

layer consists of many residual blocks, using batch Normalization and rectifier nonlinear-

ities.

B. Input layer: Raw Board Representation of the position and its history. only the Othello

features of the chess surface are used.

C. The output layer: (p, v) = fθ(s), the probability distribution and prediction of the next

move. pa is a vector of The probability distribution of the next move p(a—s), v is a value

representing the probability that the currently playing party will win. Role: Acts as both

a strategy network and a value network.

D. Training: a deep neural network in AlphaGo Zero using reinforcement learning algorithms

in a self-opposed game Training. For each board s, the neural network fθ obtained in

the previous round is used to guide the MCTS Monte Carlo tree search. The Monte

Carlo search tree outputs a probability distributionπ for each move, called search prob-

ability searchprobabilities. search probabilities are better distributed than the output

p-probability of the neural network alone. able to select stronger moves. From this point

of view, MCTS can be viewed as a strategy boosting operation in the Policy Iteration

algorithm (policy improvement operator). This means that the improved, Monte Carlo

search-tree-based strategyπ is constantly used to make a decision move during the self-

playing process , which will ultimately determine the winner as a sample value of the

eventual winner z, can be seen as Policy Policy evaluation in Iteration operator), an

assessment of the situation on the current board, as a prediction of the probability of

winning the game on the current board. The key to the reinforcement learning algorithm

here is to repeat during policy iteration These search operations, policy improvement and

policy evaluation. after the Monte Carlo search, update the neural network parameters so

that the output of the updated neural network : moving probability and predicted value

(p, v) = fθ(s), which can more closely approximate the search probability and self-game

obtained by MCTS of the winning side (π, z). This new neural network will continue

to guide the Monte Carlo search in the next round of self-opposition, making the search

more robust.

E. MCTS search simulation process: a neural network fθ is used to guide the simulation

process. Each edge of the search tree stores the prior probability P (s, a), the number of

visits N(s, a) and the action benefit value Q(s, a).

Figure 10: The diagram of the Alpha Zero

Problem 3 continued on next page. . . 14

Yiwei Yang Reinforcement Learning (Professor Ziyu Shao): Final Project Problem 3 (continued)

F. Data generation (self-playing) process: using the reinforcement learning network from the

previous round to guide Monte Carlo during each game of self-playing Search the tree to

play chess. For each time step t of the game on the board st, the Monte Carlo search

simulation process generates a probability distribution πt for the next move, thus can

generate data pairs (st, πt). The game is played until the moment at time step T , when

the game is decided and the payoff rT is obtained. rT is then returned and labeled as a

The preceding time step t(< T) produces data pairs (st, πt, zt) on zt, where zt = ±rT , ±
The symbols are determined by the corresponding moves of the current game face. From

this, one game can generate many training data (st, πt, zt). During training, st is the

input to the neural network: the features extracted from the current board, (πt, zt) are

the labels of the sample st, The output (p, v) of the neural network is to be fitted to that

label.

G. Optimization process: the neural network is first initialized using a random weight θ0.

In each subsequent iteration of Iteration i ≥ 1 (each iteration corresponds to a number

of complete games of Go), the Neural networks are optimized for training using Policy

Iteration, a reinforcement learning algorithm that will The Monte Carlo search tree is

incorporated into the training process using the previous round of the neural network

fθi−1 at each time step t of that round of iteration i to Instruct the Monte Carlo search

πt = αθi−1(st) until time step T produces a winner, constructing the round as described

above The data generated by the game (st, πt, zt). Next, training data (s, π, zt) is obtained

by normal random sampling from the data generated at all time steps of the round, and

the neural network Using this training data for parameter updates, the goal is to enable

the output of the new neural network (p, v) = fθi(s) to be fit (π, z), i.e., minimizing the

error between v and z and maximizing the similarity between p and π. The optimization

loss function is as follows, combining MSE and cross-entropy loss (which also includes a

regularization term). The optimization loss function is as follows, combining MSE and

cross-entropy loss (also including the regularization term).

`(θ) = (z − v)2 − πT log p+ c‖θ‖2

ii. The training process consists of three parallel core subprocesses: first from the 500,000 board

data generated so far by the αθ∗ Medium-normal sampling followed by random gradient

descent optimization (mini-batch:2048; impulse parameter:0.9 ; regularization parameter:10-

4.)

Next, every 1000 rounds, a checkpoint is set for evaluation. The current best AlphaGoZero

αθ∗ and the current round of AlphaGoZero αθi are performed 400-game matchup. (1,600

MCTS simulations per move)

Finally, Self-play. using the best current AlphaGoZero αθ∗ to generate a self-playing game

Data. 25,000 complete games are played in each iteration, using 1600 MCTS simulations per

move. In the first 30 moves of each game, the temperature parameter is set to τ = 1, and

the probability of a move is proportional to the number of visits to ensure the diversity of

moves. Subsequent step τ → 0, the probability of the action with the most visits tends to be

1, and the remaining probability is 0. In addition, to increase the probability of exploration

exploration, adding the Dirac noise P (s, a) = (1− ε) to the root node s0 a priori probability

pa + εηa , where the parameter value is η Dir(0.03), ε = 0.25.

Problem 3 continued on next page. . . 15

Yiwei Yang Reinforcement Learning (Professor Ziyu Shao): Final Project Problem 3 (continued)

Figure 11: The training set of the neural network in Alpha Zero

(c) Comparative experiment

The reinforcement learning pipeline approach was used to train AlphaGo Zero. The training

started with completely random behavior and lasted for 3 days, without human intervention.

During this process, a total of 4.9 million self-playing chess games were generated, with 1600

simulations performed per Monte Carlo search. The corresponding average cost per move is 0.4

s. The parameters of the neural network use 700,000 mini batches, each with The mini batch

contains 2048 planes to be updated and the residual neural network contains 20 residual blocks.

residual blocks.

Figure 12: The result of the Alpha Zero

Testing AlphaGo Zero using KGS Server Dataset human expert chess playing data Predict the

ability of human experts to play chess. That is, to test it, enter the data from the human chess

playing surface, output the next move, and see how it compares to actual human play Whether

it is the same, calculate the prediction accuracy. As a comparison, plot the predictive power of

supervised learning, using the same network and algorithm, but the data is not generated by self-

gaming of, but rather from human data. As shown in Figure above, it can be seen that in terms

Problem 3 continued on next page. . . 16

Yiwei Yang Reinforcement Learning (Professor Ziyu Shao): Final Project Problem 3 (continued)

of predicting the ability of human experts to play chess, the reinforcement learning of AlphaGo

Zero algorithm is weaker than the supervised learning algorithm. It is worth noting that while

AlphaGo Zero is slightly weaker at predicting human experts’ ability to play chess, its Go ability

and the The ability to predict eventual wins and losses, however, outperforms supervised learning,

as can be seen in the MSE plot in Figure 3c below. This shows that AlphaGo Zero learned certain

Go strategies on its own, and these strategies are qualitatively different from the way humans

play Go.

(d) The possible method of improving:

i. Actually using a single network enables both Expansion and Evaluation. The value network

in AlphaGo is also capable of indirectly doing Expansion (selecting actions with large values).

ii. Here AlphaGo Zero reinforcement learning uses Policy Iteration, and the Policy Gradient is

used in AlphaGo. policy Iteration is similar to Q-learning in that it is value-based reinforce-

ment learning. algorithm with the goal of maximizing the Bellman equation, Policy Iteration

maximizing the Bellman expectation equation, Q -learning maximizes the Bellman optimal

equation. The final result is a deterministic policy (near-deterministic policy). In contrast,

Policy Gradient is a policy-based reinforcement learning algorithm that directly optimizes the

The strategy function, a function estimation idea where the optimization method maximizes

the desired output based on the reward payoff, will eventually yield a strategy Distributed

functions can learn random polices over a large policy space.

iii. I think the AlphaGo Zero Monte Carlo search yields what would have been a deterministic

strategy (policy Iteration is still essentially an optimal bellman equation) with a final strategy

distribution π. It was actually only calculated by Monte Carlo searching for the number of

visits to the simulation process nodes, see above Monte Carlo Play stage. Alternatively, one

can think of AlphaGo Zero’s reinforcement learning algorithm as a combination of value based

and combination of policy based methods.

iv. I think the difference between the Value based approach and policy based is equivalent to

the difference between maximum likelihood estimation and the Bayesian estimation of the

difference, maximum likelihood estimation is based on a best solution for the training sample

provided by the designer; Bayesian estimation is a weighted average of many feasible solutions,

reflecting the degree of uncertainty about the models used Remaining Uncertainty. Looking

back at AlphaGo’s use of the Policy based method, the Policy Gradient, AlphaGo Zero uses

the Value based method of I would venture to guess that the reason here is that the Monte

Carlo search process introduces training. process, making the policy obtained by the Value

based approach significantly more deterministic and reliable, without the need for excessive

Consider residual uncertainty. In addition, the Value based method here is fast to train and

does not require significant resources to ensure convergence speed . Of course, AlphaGo Zero

ultimately builds on Policy Iteration and still uses the The probability distribution of the

Monte Carlo search tree output strategy also shows the trade-offs and combinations of the

two approaches.

v. We can also improve core elements like Policy Iteration, MCTS. This includes single improve-

ments as well as improvements in the way multiple elements are combined. For example, the

design of the final payoff function rT in the reinforcement learning algorithm, whether there

is a better network architecture in deep learning, such as SENet etc., can Monte Carlo search

trees be used in deep learning algorithms in addition to reinforcement learning algorithms to

guide the back propagation of errors, etc. ; whether there is a better way to calculate action

probability distributions after Monte Carlo simulations are completed. On the other hand,

of course, the question of whether there are new areas that can replace the centrality of the

Monte Carlo search tree, and whether forward-looking questions are only It takes a lot of

Problem 3 continued on next page. . . 17

Yiwei Yang Reinforcement Learning (Professor Ziyu Shao): Final Project Problem 3 (continued)

simulation to get feedback, is there another way to do it better.

4. For Silver et al. (2018) ”I can’t disguise my satisfaction that it plays with a very dynamic style, much

like my own!”

(a) The most enlightning part, Alpha zero can be deployed in any interllegent system in the society.

For human chess:

i. In chess, AlphaZero defeated the 2016 TCEC (Season 9) world champion Stockfish, winning

155 games and losing just six games out of 1,000. To verify the robustness of AlphaZero, we

also played a series of matches that started from common human openings. In each opening,

AlphaZero defeated Stockfish. We also played a match that started from the set of opening

positions used in the 2016 TCEC world championship, along with a series of additional

matches against the most recent development version of Stockfish, and a variant of Stockfish

that uses a strong opening book. In all matches, AlphaZero won.

ii. In shogi, AlphaZero defeated the 2017 CSA world champion version of Elmo, winning 91.2%

of games.

iii. In Go, AlphaZero defeated AlphaGo Zero, winning 61% of games.

Figure 13: The diagram of the advancement with time

Deepmind applies 5000 TPU1 to train few hours can beat human power, and even machine based

on the human knowledge: Stockfish.

This manifest the scalability of the AlphaZero algorithm, which mentioned in the paper, itcan be

applied in Intelligent healthcare, Smart driving, NLP and Robotics

(b) I think the paper does not make any more advancement in the thoery. Just a little remedy. MCTS

is already a very scalable algorithm.

(c) The experiment between AlphaZero and Stockfish, I think just release the result is not convincinig

for the conclusion that AI is unbeatable by minmax. This is actucaully the difference between ma-

chine and human. Admittedly, MCTS can do pattern matching search and solve anything, sounds

like brute and elegant conquer of human knowledge. The subtle knowledge of chess unearthed

by human masters over 1000 years is not needed, nor is the subtle pruning search constructed by

algorithm masters, nor should it be any opening library residue library? Some people think it is

because the calculating power of Stockfish is not good, but the truth is the runtime AlphaZero

just need to search 70,000 times per sec compared to 80,000,000. The problem is the opening of

the game. Because the first few step contains most space and least calculable. The perspective of

Alphazero is probability while Stockfish is search based on knowledge. The result shows all the

problems are triggered by first 15 step. and though the chess is easy to get toe, the Stockfish still

can’t get to toe from post-15 steps.

Problem 3 continued on next page. . . 18

Yiwei Yang Reinforcement Learning (Professor Ziyu Shao): Final Project Problem 3 (continued)

Figure 14: This search tree is also suitable to Stockfish

The problem is SF has calculated a whole bunch of variations, but the vast majority of them are

just shipping pieces back and forth and then giving valuations based on the number of pieces in

the force, with no actual plan. It’s no surprise that one of the big reasons why players previously

thought that maneuvers were better than pure soft was that SFs didn’t address closed positions.

The search algorithm does not have good performance in the first 15 steps is the key problem.

(https://zhuanlan.zhihu.com/p/32166417)

Figure 15: My thoughts of not good experiments

5. I prepared to take ? & ? together to talk, because they are basically the same thing. Imperfect-

Information Games is Texas Deck. The main point is that A game of incomplete information is a

game in which players have no common knowledge of the game being played, i.e., it cannot be played

only through sub-games of information to solve the subgame, which is usually not globally optimal. In

related studies, it is common practice to approximate the game’s Nash equilibrium strategy, i.e., each

player cannot solve the subgame by changing only his own of strategies to improve their own returns.

In a zero-sum game, if each player chooses the optimal strategy against his opponent, then the game

as a whole achieves Nash equilibrium, with each The player’s strategy is the optimal strategy (Nash

equilibrium strategy).

(a) DeepStack’s core algorithm is called Continual Re-solving, which is repeatedly traversing the

Searching the tree and using Counterfactual Regret Minization (CFR)) algorithm continuously

Problem 3 continued on next page. . . 19

Yiwei Yang Reinforcement Learning (Professor Ziyu Shao): Final Project Problem 3 (continued)

optimizes the strategy and evaluates the nodes that exceed the specified depth in combination

with value network. Its partial search tree is shown in the figure below.

Figure 16: The diagram of Continual Re-solving

(b) Specifically, DeepStack does not save previous strategies and calculates them instantly each time

it needs to act. For calculating the corresponding policy in any public state, you only need to

provide your own range and your opponent’s counterfactual values are sufficient, i.e. they are

sufficient to summarize the current state of the All information that is known to the player. Note

that the counterfactual values here are not one value, but a series of values corresponding to the

In order to calculate the strategy on the fly. We need to track our own range and our opponent’s

counterfactual from the start of the game. values, at the beginning of the game, range is initialized

to uniform distribution, while counterfactual values are initialized to each type of As the game

progresses, you need to keep updating their values.

i. When acting on your own: update counterfactual values according to the calculated strategy;

update range according to the strategy and Bayes’ law

ii. On the flop: update counterfactual values according to the last strategy; if the flop comes

with four identical cards, set the probability of the corresponding card in the range to zero.

iii. When the opponent acts: No need to update.

Figure 17: The Re-Solve algorithm

(c) Specifically look at the search process, search is based on depth-first search, and limit the depth,

if the restriction depth of 4, the complexity can be reduced to 1017, DeepStack also further

application of action abstraction, that is, only part of the action, the complexity is further reduced

to 107

(d) After evaluating counterfactual values the current strategy needs to be calculated, using the

algorithm CFR. which defines a regret value that means that in the current state, I choose behavior

Problem 3 continued on next page. . . 20

Yiwei Yang Reinforcement Learning (Professor Ziyu Shao): Final Project Problem 3 (continued)

A over behavior B of the Regret level. For example, in rock, paper, scissors, my opponent played

scissors and I played cloth, at which point I would regret not playing rock even more, as opposed

to Not so much regretting not having scissors out.

A regret is defined as the state reached by the action you regret not choosing. counterfactual

value and counterfactual of the current state. value of the difference. For example, in the above

example, in the case where the other party produces scissors, I produce the utility of the cloth (

counterfactual value) is -1; the utility of scissors is 0; the utility of rock utility is 1. So I choose

cloth over scissors for the regret value R(scissors -¿ cloth) = 1; and not stone. The regret value

R(stone -¿ cloth) = 2.

After defining the regret value, we can apply the method of Regret Matching to the decision,

with the idea that The tendency is to choose actions with a greater regret value. For example, in

rock-paper-scissors, if we play n games and then add the regret value of all actions in each game

to the up, and then do a normalization, we get a probability distribution as our strategy.R(a) =∑n
i=1Ri (ai)

The value of regret at each step is determined by the opponent’s behavior, so the CFR algorithm

is actually changing our own strategy based on the opponent’s strategy.

Figure 18: The UPdate algorithm

(e) experiment actuall does not point out the real problem. This made this algorithm not able to

beat all human. This is because DeepStack also didn’t improve its match data with the previous

AI, so I’m afraid it’s not as strong as it says it is, I It is believed that training with randomly

generated data may be its bottleneck. The figure below is given by the authors of its competitor

Libratus, which is highly referable.

(f) Improvements: Libratus in ? consists of three parts: the blueprint strategy, the subgame solution

and the self-enhancement module. The blueprint strategy is a macro strategy calculated before

the match, and due to the high complexity of the derby, some abstractions are made during

the calculation; the subgame solution is a subgame in the Instantly solving sub-games based on

blueprint strategies and known information as the game progresses to get a better strategy; self-

enhancement module is Refers to adding branches to the blueprint that are not in the blueprint

encountered in the actual battle.

Problem 3 continued on next page. . . 21

Yiwei Yang Reinforcement Learning (Professor Ziyu Shao): Final Project Problem 3 (continued)

Figure 19: The Libratus structure

In ?, the author did some convincing experiments to prove their lengths and shorts:

i. +: The theory is complete, and the article demonstrates that the method can converge to

a Nash equilibrium; a superior strength, the only Texas Hold’em AI capable of beating top

human players.

ii. -: The amount of computation is so large that Libratus runs on a supercomputing center,

requiring 200-600 nodes with 14 cores each. 128 gigabytes of memory, 12 million core hours

of computation...

Problem 4

For the forbidden rules as discussed in scblqj (2011), I realize them both in themcts pure.py andmcts alphaZero.py

by modifying

1 i f (board . c u r r e n t p l a y e r ==1):

2 s en s ib l e moves = board . a v a i l a b l e s

3 e l s e :

4 now state=board . c u r r e n t s t a t e ()

5 s en s ib l e moves = board . a v a i l a b l e s

6 #case1 : l i n e , upper− l e f t case

7 i f (now state [0] [1 , 6]==1 and now state [0] [2 , 5]==1 and\
8 now state [0] [4 , 3]==1 and\
9 now state [0] [5 , 2]==1 and\

10 now state [0] [6 , 1]==1

11) :

12 s en s ib l e moves . remove (3∗8+4)

13 #case2 :3−3 forbidden , middle−r i g h t case

14 tmp=now state [0]

15 tmp=np . f l a t n o n z e r o (tmp)

16 f o r a l l l o c in s ens ib l e moves :

17 i f (((a l l l o c //8)>=2) and ((a l l l o c %8)>=2)):

18 i f (((a l l l o c −1) in tmp) and ((a l l l o c −2) in tmp)

19 and ((a l l l o c −8) in tmp)

20 and ((a l l l o c −16) in tmp)) :

21 s en s ib l e moves . remove (a l l l o c)

22 #case3 : down−r i g h t case

23 f o r a l l l o c in s ens ib l e moves :

24 i f (((a l l l o c //8)>=0) and ((a l l l o c %8)>=1)):

25 i f (((a l l l o c −8) in tmp) and ((a l l l o c +1) in tmp)

Problem 4 continued on next page. . . 22

Yiwei Yang Reinforcement Learning (Professor Ziyu Shao): Final Project Problem 4 (continued)

26 and ((a l l l o c +2) in tmp)

27 and ((a l l l o c +3) in tmp)

28 and ((a l l l o c +8) in tmp)

29 and ((a l l l o c +16) in tmp)) :

30 s en s ib l e moves . remove (a l l l o c)

Basic settings, because this is a self-play game, we can’t use a human knowledge to help. But I found a good

benchmark AI fo

Train environment:

Figure 20: The ocupancy of V100

1. AlphaZero for Gomokuwith for-bidden rulesin a 8 x 8 board

(a) baseline The first modified version of the 8x8 graph is using pytorch and simply add the com-

posed distributed option of pytorch and trained on 4 Tesla V100 for one night. Roughly, The

raw output result is: batchi : 2330, episode len : 9, kl : 0.01711, lr multiplier : 0.444, loss :

2.674341917037964, entropy : 2.241215705871582, explained var old : 0.461, explained var new :

0.565. The data does not change dramatically afterwards. We set the model as baseline and

improves it.

(b) improvement alphazerompi provided a good idea of improving the MCTS practically. The

original ideas are all from two paper discussed before. This is based on tensorlayer and tensorflow

network. The converge time speeds up to roughly 4 hours to beat the 8-depth minmax tree.

The structure is similar to APV-MCTS.

Problem 4 continued on next page. . . 23

Yiwei Yang Reinforcement Learning (Professor Ziyu Shao): Final Project Problem 4 (continued)

Figure 21: The diagram of the APV-MCTS

i. Network Structure

Current model uses 19 residual blocks, more blocks means more accurate prediction but also

slower speed

The number of filters in convolutional layer shows in the follow picture

Figure 22: The Network

ii. Dirichlet Noise

I add dirichlet noises in each node, it’s different from paper that only add noises in root node.

I guess AlphaGo Zero discard the whole tree after each move and rebuild a new tree, while

here I keep the nodes under the chosen action, it’s a little different.

Weights between prior probabilities and noises are not changed here (0.75/0.25), though I

think maybe 0.8/0.2 or even 0.9/0.1 is better because noises are added in every node.

iii. MPI

I modified the initial-h’s 3 all-to-all to 12 ring-Bcast implementation, which adds up the speed.

Problem 4 continued on next page. . . 24

Yiwei Yang Reinforcement Learning (Professor Ziyu Shao): Final Project Problem 4 (continued)

2. Implementation without neural network on ≥ 8x8.

Because the problem is not well-explained whether we should use MCTS or just use a technique without

MCTS. So I discussed the pure MCTS and minmax compared with the corresponding 8x8, 11x11 and

15x15 MCTS with neural network. For lack of time, the 11x11 and 15x15 MCTS is trained within 4

hours.

(a) minmax algorithm with Alpha-Beta pruning technique:

To make the Concave AI agent find the Optimal Decision of the Concave game, put the Go

virtually in advance and try to find the optimal path

We implemented the minmax algorithm to find the optimal path by placing the number of oppo-

nents in advance.

In order to prevent the number of searches from increasing exponentially, the search was cut off by

setting the number as many as the specified number (depth) in advance, and then the evaluation

function was applied to evaluate the route.

By applying the Alpha-Beta pruning technique, sections that do not need to be searched are

removed.

1 de f minmax(s e l f , depth , p laye r) : # Here to change depth .

2 i f depth == 0 or s e l f . stoneCnt == GO BOARD X COUNT

3 ∗ GO BOARD Y COUNT:

4 re turn (s e l f . eva luate () , None , None)

5 i f p l aye r == AI :

6 maxValue = −INF

7 x = 0

8 y = 0

9 f o r k in s e l f . searchSpace :

10 i , j = k

11 i f s e l f . goBoard [i] [j] == EMPTY:

12 s e l f . goBoard [i] [j] = AI

13 s e l f . stoneCnt += 1

14 r e t = s e l f . minmax(depth − 1 , PLAYER1)

15 i f r e t [0] > maxValue :

16 maxValue = r e t [0]

17 x = i

18 y = j

19 s e l f . stoneCnt −= 1

20 s e l f . goBoard [i] [j] = EMPTY

Problem 4 continued on next page. . . 25

Yiwei Yang Reinforcement Learning (Professor Ziyu Shao): Final Project Problem 4 (continued)

21 i f depth == 1 :

22 re turn (maxValue , x , y)

23 e l s e :

24 re turn (maxValue , None , None)

25 pass

Figure 23: Graph of minmaxWithAlphaBeta(self, alpha, beta, depth, player)

The result is that If we keep add up to the search tree, the better the AI. Roughly 8-layer minmax

has the ability to match (victorious and defeated by each other in 5 games.) in 11x11 & 15x15.

They roughly have the same time of the runtime calculation on my laptop with 2070 maxq and

9750h, but minmax does not make gpu computation. In 8x8 cases, the nueral network performs

better. This may because the time that 8x8 takes for Alphazero is ok for it to become a monster,

but 11x11 and 15x15, 4 hours don’t make it happen.

(b) Pure MCTS

The MCTS algorithm without neural network is just utilize UCB1 algorithm and make iterations.

The result of the Pure-MCTS is very poor. In all 8x8 11x11 and 15x15, Pure MCTS is defeated

by the AlphaZero.

3. some summary

(a) experience

I was dealing with the bugs between different input of the tensorflow, it some times crashes in my

MPI program. This is because the dimm transported between node is not asychronologically, so

may give invalid input to next layer or next step.

(b) insight

Depth Limited minmax is quite good to be a NPC of the game for its lightly used property(you

don’t have to train and can used to solve small problem), while the RL or DRL based algorithm

is likely to be the challenger to the intelligences if given enough time and hardware. Alpha Zero is

to converge to the optimal with given times set and can also get a good result if just given small

amount of time. MCTS is more scalable but takes longer to converges.

Problem 4 continued on next page. . . 26

Yiwei Yang Reinforcement Learning (Professor Ziyu Shao): Final Project Problem 4 (continued)

The overall reason is because the search depth of the algorithm, all the tree algorithm is about to

be limited by the computing power. The truth is for small problem minmax and MCTS is more

efficient, while MCTS with neural network is more for bigger and harder problem.

(c) lessons

The minmax without AlphaBeta pruning is very slow, as slow as ”LianDan”, and always lose the

game, so pruning is very necessary.

4. Innovative part:

(a) User Interface: I utilize the pygame to draw the playing UI. The UI is maintain in the class GUI.

Figure 24: The diagram of GUI

Figure 25: GUI graph

(b) MPI implementation refering to Chaslot et al. (2008). make training time shorter from roughly 8

hours to 4 to the same effects.

(c) Test both pytorch and tensorflow layer(legacy from original AlphaZero Gomoku).

27

Yiwei Yang Reinforcement Learning (Professor Ziyu Shao): Final Project Problem 5

References

Kenshin Abe, Zijian Xu, Issei Sato, and Masashi Sugiyama. Solving np-hard problems on graphs with

extended alphago zero. arXiv preprint arXiv:1905.11623, 2019.

Noam Brown and Tuomas Sandholm. Safe and nested subgame solving for imperfect-information games. In

Advances in neural information processing systems, pages 689–699, 2017.

Noam Brown and Tuomas Sandholm. Superhuman ai for heads-up no-limit poker: Libratus beats top

professionals. Science, 359(6374):418–424, 2018.

Guillaume MJ-B Chaslot, Mark HM Winands, and H Jaap van Den Herik. Parallel monte-carlo tree search.

In International Conference on Computers and Games, pages 60–71. Springer, 2008.

Iain Dunning, Swati Gupta, and John Silberholz. What works best when? a systematic evaluation of

heuristics for max-cut and qubo. INFORMS Journal on Computing, 30(3):608–624, 2018.

Michel X. Goemans and David P. Williamson. Improved approximation algorithms for maximum cut and

satisfiability problems using semidefinite programming. J. ACM, 42(6):1115–1145, November 1995. ISSN

0004-5411. doi: 10.1145/227683.227684. URL https://doi.org/10.1145/227683.227684.

Tomas Mikolov, Ilya Sutskever, Kai Chen, G Corrado, and Jeff Dean. Advances in neural information

processing systems 26, nips, 2013. arXiv preprint arXiv:1310.4546, pages 3111–3119, 2013.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare, Alex

Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control through

deep reinforcement learning. nature, 518(7540):529–533, 2015.

Matej Moravč́ık, Martin Schmid, Neil Burch, Viliam Lisỳ, Dustin Morrill, Nolan Bard, Trevor Davis, Kevin

Waugh, Michael Johanson, and Michael Bowling. Deepstack: Expert-level artificial intelligence in heads-up

no-limit poker. Science, 356(6337):508–513, 2017.

Ethan Fetayan Weizman Institute of Science. Stochastic optimization markov chain monte carlo, 2012. URL

http://www.wisdom.weizmann.ac.il/ ethanf/MCMC/stochasticoptimization.pdf.

Reuven Y Rubinstein and Dirk P Kroese. The cross-entropy method: a unified approach to combinatorial

optimization, Monte-Carlo simulation and machine learning. Springer Science & Business Media, 2013.

scblqj. The complete explanation of gomoku forbidden rules, 2011. URL

https://wenku.baidu.com/view/bd330beb856a561252d36f12.html.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche, Julian

Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering the game of go

with deep neural networks and tree search. nature, 529(7587):484–489, 2016.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez, Marc

Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. A general reinforcement learning

algorithm that masters chess, shogi, and go through self-play. Science, 362(6419):1140–1144, 2018.

Leo Zhou, Sheng-Tao Wang, Soonwon Choi, Hannes Pichler, and Mikhail D Lukin. Quantum approxi-

mate optimization algorithm: performance, mechanism, and implementation on near-term devices. arXiv

preprint arXiv:1812.01041, 2018.

28

