
Reinforcement Learning: Homework #5
Due on May 15, 2020 at 11:59pm

Professor Ziyu Shao

Yiwei Yang

2018533218

1

84

Yiwei Yang Reinforcement Learning (Professor Ziyu Shao): Homework #5 Problem 1

Problem 1

1. Applying the Bellman function for value iteration Ui+1(s)← R(s) + γmaxa∈A(s)

∑
s′ P (s′|s, a)Ui (s′),

as we can see for the optimal value recursive, ∀N,n > N, V (sn) = 1
1−γ . The induction equation is

V (sn−1) = γV (sn), for n ∈ N and the starting state: V (s1) = γn−1

1−γ . The problem can be reduced to

the isometric summation: V (G) = Σ∞k=1V (sk) = Σ∞k=1
γk

1−γ = 1
1−γ

2. An initial policy with action a in both states leads to an unsolvable problem. The initial value deter-

mination problem has the form:

V (s1) = γn−1

1−γ
V (sn−1) = γV (sn), for n ∈ N
V (G) = 1

1−γ

For γ = 0, it’s clear to see V (sk) = 1, for k ∈ N, meanwhile we have ∀k, π(sk) = a0, thus, it stucks to

optimal policy.

If γ > 0, from the inconsistent state induction equaiton, we have that the value of γ does not change

the order. So, we can find the optimal policy after all; though, the value function has relation with γ.

The difference between γ ∈ (0, 1) and γ ∈ [1,∞), is that the former value can converge to a constant,

while the latter diverges to ∞.

3. Adding constants does not affect the optimal policy, but it does change the value function.

For theoratical proof:

vπnew (si) =

∞∑
t=0

γt (rt + c) =

∞∑
t=0

γtrt +

∞∑
t=0

γtc = vπold (si) +
c

1− γ

For simulation result:

We set up a literally same model as UCB AI courses does, denote n = 9, the setup is elaborated as

below:

function VALUE-ITERATION(mdp, ε) returns a utility function

inputs:mdp, an MDP with states S, actions A(s), transition model P (s′|s, a) rewards R(s), discount

γ, ε, the maximum error allowed in the utility of any state

local variables: U,U ′, vectors of utilities for states in S, initially zero.δ, the maximum change in the

utility of any state in an iteration

Problem 1 continued on next page. . . 2

10

Yiwei Yang Reinforcement Learning (Professor Ziyu Shao): Homework #5Problem 1 (continued)

repeat

U ← U ′; δ ← 0

for each state s in S do

U ′[s]← R(s) + γ max
a∈A(s)

∑
s′

P (s′|s, a)U [s′]

if |U ′| s]− U |s|| > δ then δ ← |U ′| s]− U [s]|

until δ < ε(1− γ)/γ

return

The result is done by merely adding the constant reward c, we take the step 15.

before adding c:

0.56999141 0.71061644 0.83561644 1.

0.44499134 0.66504707 0.52054795 −1.

0.30913886 0.22232089 0.34732113 0.08650751

Adding c = 1:

0.56999142 0.71061644 0.83561644 1.

0.44499138 0.66504707 0.52054795 −1.

0.30913898 0.22232101 0.34732117 0.0865076

As we can see, adding constants c does not affect the optimal policy.

4.

vπnew (si) =
∞∑
t=0

γta (rt + c) = a
∞∑
t=0

γtrt +
∞∑
t=0

γtac = avπold (si) +
ac

1− γ

(a) Similarly if a > 0, the optimal policy remains unchanged.

(b) a = 0, all policies are optimal

(c) a < 0,optimal policy is to stay away from G.

Problem 2

1. As the
∑∞
t=0 γ

trt and the value function:

Iteration V (s0) V (s1) V (s2)

0 ∞ 0 γ2

1−γ
1 ∞ 1 ∞
2 ∞ ∞ 0

As for the action a1 from state s0 at time step t = 0, we can simply apply the isometric series and get

V = 0 + γ + γ2 + · · · = γ
1−γ .

2. As the value function depicted above, for the action a2 from state s0 at time step t = 0 can be written

as the constant series V = γ2

1−γ + 0 + 0 + · · · = γ2

1−γ . So, it’s clear that the optimal stucks to a1.

Problem 2 continued on next page. . . 3

10

Yiwei Yang Reinforcement Learning (Professor Ziyu Shao): Homework #5Problem 2 (continued)

3. We can simply get the bounding by letting Qn+1 be the Q(s0, a2) = γ2

1−γ constant situation when

Vn(s2) = 0, because value iteration keep choosing the sub-optimal action while Q (s0, a2) > Q (s0, a1),

this bound is clear. According to the above transition matrix, we have teh value iteration updates

recursive:Qn+1 (s0, a1) = 0 + γVn (s1) and Vn+1 (s1) = 1 + γVn (s1)

Qn+1 (s0, a1) = 0 + γ (1 + γVn (s1)) = γ
(
1 + γ + · · ·+ γn−1 + γnVn=0 (s1)

)
= γ

(
1− γn

1− γ

)
Then we apply the basic unequality.

Qn+1 (s0, a1) = Q (s0, a2)

γ

(
1− γn∗

1− γ

)
=

γ2

1− γ

n∗ =
log 1− γ)

log(γ)

=
log(1− γ)

log(1 + γ − 1)

≥ log(1− γ)
2 + γ − 1

2(γ − 1)

= − log 1/(1− γ)
γ + 1

−2(1− γ)

≥ 1

2
log

(
1

1− γ

)
1

1− γ

Because log(1 + x) ≤ 2x
2+x for x ∈ (−1, 0], O.E.D.

Problem 3

1. Generally, we have the error bound if ‖Ui − U∗‖ < ε then ‖Uπi − U∗‖ < 2εγ/(1− γ). Because of the

fact that π(s, π(s)) gives the expected return when starting in s, and π∗(s) is π∗(s) = arg maxa
∑
P (s′|s, a)U (s′),

we can simply get the unequality Q̃(s, π(s)) ≥ Q̃ (s, π∗(s)) by proving ||Q̃−Q∗|| ≤ ε.

V ∗(s)−Q∗(s, π(s)) = V ∗(s)− Q̃(s, π(s)) + Q̃(s, π(s))−Q∗(s, π(s))

≤ V ∗(s)− Q̃ (s, π∗(s)) + ε

= Q∗ (s, π∗(s))− Q̃ (s, π∗(s)) + ε

≤ 2ε

2. V ∗(s)− Vπ(s) can be unfolded.

V ∗(s)− Vπ(s) = V ∗(s)−Q∗(s, π(s)) +Q∗(s, π(s))− Vπ(s)

≤ 2ε+Q∗(s, π(s))−Qπ(s, π(s))

By getting the expectation of both side. Es′ [V ∗ (s′)− Vπ (s′)] ≤ 2ε
1−γ

Ans = 2ε+ γEs′ [V ∗ (s′)− Vπ (s′)]

O.E.D

3. Q∗(s, π(s)) represents that the strategy is currently used and the optimal strategy is continued later,

recursively. Because in that case, from the graph we have Q∗(s1, go) = 2ε
1−γ , Q∗(s1, stay) == 2εγ

1−γ .

Meanwhile, the V ∗(s1) = 2ε
1−γ , V ∗(s2) = 2ε

1−γ

Problem 3 continued on next page. . . 4

10

Yiwei Yang Reinforcement Learning (Professor Ziyu Shao): Homework #5Problem 3 (continued)

4. The question equals to finding a proof that one can find a policy that makes the equation. First,

observe that 2ε is the gap between two state-value function, the policy with state-action value function

Q̃ that π(s1) = stay always holds can be constructed. In that case, to prove the boundness, define the

situation near that consistent tie rule. let Q̃(s1, go) = Q∗(s1, go)−ε and Q̃(s1, stay) = Q∗(s1, stay)+ε.

Eventually we have(a little bit complicated) Vπ(s1)− V ∗ (s1) = − 2ε
1−γ the bound is tight. O.E.D.

Problem 4

1. lemma Some Denotion

(a) Cumulative discounted return

Rt = rt+1 + γrt+2 + γ2rt+3 + · · · =
∞∑
k=0

γrt+k+1

(b) Policy Policy can be written as π(s, a). That is, the probability that action A was performed in

state S, which is used to describe a series of actions. It is a function that can take a state and an

action and return the probability of taking that action in the current state.

(c) Value function

i. state value function

V π(s) = Eπ [Rt|st = s]

ii. action value function

Qπ(s, a) = Eπ [Rt|st = s, at = a]

(d) Probability of state transfer

P ass′ = Pr (st+1 = s′|st = s, at = a)

(e) return expectation

Rass′ = E [rt+1|st = s, st+1 = s′, at = a]

(f) Markov decision-making process It is compose of 4 state M = {S,A, P,R}, all the state transform

observe the Markov property.

(g) Optimal Policy Define a partial ordering over policies, we have π ≥ π′ if vπ(s) ≥ vπ′(s),∀s
(h) Optimal Policy Funciton The optimal state-value function v∗(s) is the maximum value function

over all policies

v∗(s) = max
π

vπ(s)

The optimal action-value function q∗(s, a) is the maximum action-value function over all policies

q∗(s, a) = max qπ(s, a)

2. lemma Bellman function
vπ(s) = Eπ [Gt|St = s]

= Eπ [Rt+1 + γGt+1|St = s]

=
∑
a

π(a|s)
∑
s′

∑
r

p (s′, r|s, a) [r + γEπ [Gt+1|St+1 = s′]]

=
∑
a

π(a|s)
∑
s′,r

p (s′, r|s, a) [r + γvπ (s′)] for all s ∈ S

As the definition below

qπ(s, a) = Eπ[Gt|St = s,At = a]

Problem 4 continued on next page. . . 5

10

Yiwei Yang Reinforcement Learning (Professor Ziyu Shao): Homework #5Problem 4 (continued)

we first have qπ(St, At) = Eπ[Gt|St, At] and qπ(St+1, At+1) = Eπ[Gt+1|St+1, At+1].

Then according to Adam’s law with extra conditioning we have E[E(Y |X,Z)|Z] = E(Y |Z), denote

Y = Gt+1, Z = (St, At) and X = (St+1, At+1)

We have

E[Gt+1|St, At] = E[E[Gt+1|St+1, At+1, St, At]|St, At] = E[E[Gt+1|St+1, At+1]|St, At] = E[qπ(St+1, At+1)|St, At]

Thus, we have Eπ[Gt+1|St = s,At = a] = Eπ[qπ(St+1, At+1)|St = s,At = a]

After that, we can tale the above equation in:qπ(s, a) = Eπ[Gt|St, At] = Eπ[Rt+1 +γGt+1|St = s,At =

a] = Eπ[Rt+1 + γEπ[qπ(St+1, At+1)|St = s,At = a] = Eπ[Rt+1 + γqπ(St+1, At+1)|St = s,At = a]

3. the proof of Bellman equation for Markov Reward Processes The value function can be decomposed

into two part which is the immediate reward Rt+1 and discounted value of successor state γv(St+1).

v(s) = E [Gt|St = s]

Because of Adam’s theorem and Markov Property, we have V (St+1) = E[Gt+1|St+1] Because of Adam’s

Law E[E(Y |X)] = E(Y), we also have Adam’s Law with extra conditioning Ê(Ê(Y |X)) = Ê(Y) ¡=¿

E[E(Y |X,Z)|Z] = E(Y |Z)

Ans = E
[
Rt+1 + γRt+2 + γ2Rt+3 + . . . |St = s

]
= E [Rt+1 + γ (Rt+2 + γRt+3 + . . .) |St = s]

We have
Ans = E[Gt|St=s]

= E [Rt+1 + γGt+1|St = s]

= E[Rt+1|St=s] + γE[Gt+1|St=s]
= E[Rt+1|St=s] + γE[V (St+1)|St=s]
= E [Rt+1 + γv (St+1) |St = s]

Continue, we can apply the LOTE

Ans = Rs + γ
∑
s′∈S

E[V (St+1)|St = s, St+1=s′]P (St+1=s′ |St = s)

= Rs + γ
∑
s′∈S

V (s′)Pss′

4. the proof of Bellman Expectation equation for Markov Process Processes

Problem 4 continued on next page. . . 6

Yiwei Yang Reinforcement Learning (Professor Ziyu Shao): Homework #5Problem 4 (continued)

For V π, we have simply apply the MDP property and LOTP to get

Vπ(s) = Eπ[Gt|St = s] =
∑
a∈A

Eπ[Gt|St = s,At = a] =
∑
a∈A

π(a|s)qπ(s, a)

For Qπ, the difference is merely value and reward function difference:

E[qπ(St+1, At+1)|St+1 = s′, St = s,At = a] = E[qπ(St+1|At+1|St+1 = s′)]

=
∑
a∈A

E[qπ(St+1, At+1)|St+1 = s′, At+1 = a] ∗ P (At+1 = a|St+1 = s′)

=
∑
a∈A

aπ(s′, a)π(a|s′)

= vπ(s′)

So, we can take in to from above and applyt the LOTE.

Ans =
∑
s′∈S

E[qπ(St+1, At+1)|St+1 = s′, St = s,At = a] ∗ P (St+1 = s′|St = s,At = a)

=
∑
a∈A

vπ(s′) ∗ Pπss′

So,
qπ(s, a) = Eπ[Rt+1 + γqπ(St+1, At+1)|St = s,At = a]

= E[Rt+1|St = s,At = a] + γE[qπ(St+1, At+1)|St = s,At = a]

= Ras + γ
∑
s′∈S

P ass′rπ(s′)

Problem 4 continued on next page. . . 7

Yiwei Yang Reinforcement Learning (Professor Ziyu Shao): Homework #5Problem 4 (continued)

As for the second layer. Take the qπ(s, a) = Ras + γ
∑
n′∈S P

a
ss′rπ (s′) for the second layer to the first

layer Vπ(s) =
∑
a∈A π(a|s)qπ(s, a)

vπ(s) =
∑
a∈A

π(a|s)

(
Ras + γ

∑
s′∈S
Pass′vπ (s′)

)

Similarly, reversely take in the equation above we have: qπ(s, a) = Ras+γ
∑
s′∈S and Pass′ =

∑
a′∈A π (a′|s′) qπ (s′, a′)

The Bellman expectation equation can also be expressed concisely using the induced MRP.

vx = Rπ + γPπvπ

with direct solution

vπ = (I − γPπ)
−1Rπ

5. the proof of Bellman Optimality equation for Markov Process Processes An optimal policy can be found

by maximizing over q∗(s, a)

π∗(a|s) =

{
1 if a = argmax q∗(s, a)

0 otherwise s∈A

Because, if π′ is a random optimal policy, 0 < π′(a|s) < 1, ∀a ∈ A, we have V∗(s) = Vπ′ (s) =∑
P a ∈ Aπ′(a|s)qπ′(s, a) ≤

∑
P a ∈ Aπ′(a|s)q∗(s, a) ≤

∑
P a ∈ Aπ′(a|s)q∗(s, a∗) = q∗(s, a

∗)

So, we get V∗(s) ≥ Vπ∗(s) =
∑
a∈A π

∗(a|s)qπ∗(s, a) = q∗(s, a
∗)

From the above equation we know that the choice is between picking exactly the action π∗(a|s) and pick-

ing a probability distribution over potentially optianal and non-optional actions, and pick best action

preferably. After all based on first and second equation, we have vπ(s) = q∗(s, a
∗) = maxa∈Aq∗(s, a)

Problem 4 continued on next page. . . 8

Yiwei Yang Reinforcement Learning (Professor Ziyu Shao): Homework #5Problem 4 (continued)

Firstly, qπ(s, a) = Ras+γ
∑
s′∈S P

a
ss′rπ (s′), so we get q∗(s, a) = maxπqπ(s, a) = Ran+γ

∑
s′∈S P

a
ss′maxπvπ (s′) =

Ran + γ
∑
s′∈S P

a
ss′v∗ (s′)

Then applying the LOTE, we get Ans =
∑
s′∈S E[v∗(St+1)|St+1 = s”, St = s,At = a] ∗ P (St+1 =

S′|St = s,AT = a) =
∑
s′∈S V∗(s

′) ∗ P ass′
Lastly, we have, q∗(s, a) = E[Rt+1 + γV∗(St+1)|St, At] = Ras + γ

∑
s′∈S P

a
ss′v∗(s

′)

Apply the same techniques with Expectation function we have: v∗(s) = maxa
(
Ras + γ

∑
s′∈S Pass′v∗ (s′)

)

Apply the same techniques with Expectation function we have: q∗(s, a) = R2
s+γ

∑
s′∈S Pass′ maxa′ q∗ (s′, a′)

Also, we have the matrix forms of Optimality equation

v∗ (s1) == max

p (s1|s1, a1) [r (s1, a1, s1) + γv∗ (s1)] + p (s2|s1, a1) [r (s2, a1, s1) + γv∗ (s2)]

p (s1|s1, a2) [r (s1, a2, s1) + γv∗ (s1)] + p (s2|s1, a2) [r (s2, a2, s1) + γv∗ (s2)]

· · ·
p (s1|s1, an) [r (s1, an, s1) + γv∗ (s1)] + p (s2|s1, an) [r (s2, an, s1) + γv∗ (s2)]

9

Yiwei Yang Reinforcement Learning (Professor Ziyu Shao): Homework #5 Problem 5

Problem 5

1. First solve the MRP by taking them into the matrix solving equation. We apply the state transition

probability matrix P =

C1 C2 C3 Pass PUb FB Sleep

C1 0.5 0.5

C2 0.8 0.2

C3 0.0 0.4

Pass 1.0

Pub 0.2 0.4 0.4

FB 0.1 0.9

Sleep 1

Taking the matrix into

 v(1)
...

v(n)

 =

 R1

...

Rn

+γ

 P11 · · · P1n

...

P11 . . . Pnn

 v(1)

...

v(n)

, ew getR =

C1 -2

C2 -2

C3 -2

Pass 10

Pub 1

FB -1

Sleep 0

Eventually, applyin the equation V = (I − γP)−1R. We have if γ = 1, we have

-12.5432

1.4568

4.3210

10.0

0.8025

-22.5432

0

which

is in accordance with the simulaiton result.

2. First let us compute some of the inferior π value of the state. We get π(study|s1) = 0.5, π(Facebook|s1) =

0.5, π(sleep|s2) = 0.5, π(study|s3) = 0.5, π(pub|s3) = 0.5. And we can get the value of P . P studys1,s2 = 1,

PPubs3,s1 = 0.2, PPubs3,s2 = 0.4, PPubs3,s3 = 0.4.

Then we can get v1 = vπ(s1) = 0.5(RStudys1 + 1 ∗ 1 ∗ Vπ(s2)) + 0.5(RFacebooks1 + 1 ∗ 1 ∗ Vπ(s4)) =

0.5(−2 + v2) + 0.5(−1 + v4)

Similarly, after get all the function, we can get

v1 -1.3

v2 -2.7

v3 7.4

v4 -2.3

 Similarly, take the computed vi into the

bellmen equation for MDP qπ, we have qπ(s1, study) = −2+1∗v2 = −2+2.7 = 0.7,qπ(s1, Facebook) =

−1 + 1 ∗ v4 = −1 + 2.3 = −3.3, qπ(s2, sleep) = 0 + 0 = 0, qπ(s2, study) = −2 + 1 ∗ v3 = −2 + 7.4 =

5.4, qπ(s3, study) = 10 + 0 = 10, qπ(s3, pub) = 1 + 0.2 ∗ (−1.3) + 0.4 ∗ (2.7) + 0.4 ∗ 7.8 = 4.78,

qπ(s4, facebook) = −1 + v4 = −1− 2.3 = −3.3, qπ(s4, quit) = 0 + v1 = 0− 1.3 = −1.3 As for the state

action function, we have

3. First let us test the optimality bellman equation of s1, we have V∗(s1) = max{−2+V∗(s2),−1+V∗(s4)},
the former is aciton=study and the latter is when action=facebook. Ans = max{−2 + 8,−1 + 6} = 6,

so a∗(s1) = study.

Then apply the q optimality funtion to calculate the following one, that is Vπ(sleep) = 0∀π, so we have

qπ(s2, sleep) = Rsleeps2 + 1 ∗ vπ(sleep) = 0 + 0∀π, so π(s2, sleep) = 0

Also, on the other hand, we have qπ(s3.study) = Rstudys3 + 1 ∗ Vπ(sleep) = 10 + 0 = 10∀π, so

Problem 5 continued on next page. . . 10

10

Yiwei Yang Reinforcement Learning (Professor Ziyu Shao): Homework #5Problem 5 (continued)

q∗(s3, study) = 10

Similarly, we have q∗(s1, study) = −2+max[0, q∗(s2, study)], q∗(s1, facebook) = Rfacebooks1 +γPFacebooks1,s4 ∗
max q∗(s4, a

′) = −1 + max[q∗(s4, facebook), q∗(s4, quit)], and q∗(s2, sleep) = 0, q∗(s2, study) = −2 +

max[10, 1∗(s3, pub)], q∗(s3, study) = 10, q∗(s3, pub) = 1+0.2∗max[q∗(s1, study), q∗(s1, framework)]+

0.4∗max[q∗(s2, study), 0]+0.4∗max[q∗(s3, pub), 10], q∗(s4, facebook) = −1+max[q∗(s4, Facebook), q∗(s4, quiy)],

q∗(s4, quit).

Also, we have the bound got by max() func. We have q∗(s2, study) = −2 + max[10, q∗(s3, pub)] ≥ 8,

q∗(s1, study) ≥ 6, q∗(s3, pub) = 0.6 + 0.6 ∗ q∗(s2, study) + 0.4max[q∗(s3, π6), 10]

By max() function’s bound, we have q∗(s3, pub) = 0.6 + 0,

Enentually, we have

v∗(s1) = 6

v∗(s2) = 8

v∗(s3) = 10

v∗(s4) = 6

v∗(sleep) = 0

Problem 6

1. The original formula is: ∑
s

,∈S
∑
r∈R

p (s′, r|s, a) = 1, ∀s ∈ S, a ∈ A(s)

As in a finite MDP, the sets of states, actions, and rewards (8,A, and R) all have a finite number

of elements. In this case, the random variables Rt and St have well defined discrete probability

distributions dependent only on the preceding state and action. That is, for particular values of these

random variables, s′ ∈ S and r ∈ R, there is a probability of those values occurring at time t, given

particular values of the preceding state and action:

p (s′, r|s, a)
.
= Pr {St = s′, Rt = r|St−1 = s,At−1 = a}

for all s′, s ∈ S, r ∈ R, and a ∈ A(s). The function p defines the dynamics of the MDP. The dot over the

equals sign in the equation reminds us that it is a definition rather than a fact that follows from previous

definitions. The dynamics function p : S × R × S × A → [0, 1] is an ordinary deterministic function

of four arguments. The | in the middle of it comes from the notation for conditional probability, but

here it just reminds us that p specifies a probability distribution for each choice of and a, that is, that∑
s′∈S

∑
r∈R p (s′, r|s, a) = 1, for all s ∈ S, a ∈ A(s)

For episodic tasks the set of terminal and non-terminal states can be denoted as S+. Therefore, the∑
s′ ∈ S

∑
r ∈ Rp(s′, r|s, a) = 1,∀s ∈ S+, a ∈ A(s) as the dynamics of the MDP in an episodic task

include as a possible transition those ending in a terminal state.

2. Applying the simulation:

(a) The optimal value funtion over all possible policies:

21.974724.4163 21.974719.4163 17.4747

19.775421.9747 19.775417.7979 16.0181

17.797919.7754 17.797916.0181 14.4163

16.018117.7979 16.018114.4163 12.9747

14.416316.0181 14.416312.9747 11.6754

Problem 6 continued on next page. . . 11

10

Yiwei Yang Reinforcement Learning (Professor Ziyu Shao): Homework #5Problem 6 (continued)

(b) The optimal policy:

[′e′][′n′,′ w′,′ s′,′ e′] [′w′][′n′,′ w′,′ s′,′ e′] [′w′]

[′n′,′ e′][′n′] [′n′,′ w′][′w′] [′w′]

[′n′,′ e′][′n′] [′n′,′ w′][′n′,′ w′] [′n′,′ w′]

[′n′,′ e′][′n′] [′n′,′ w′][′n′,′ w′] [′n′,′ w′]

[′n′,′ e′][′n′] [′n′,′ w′][′n′,′ w′] [′n′,′ w′]

3. Let us do the calculation similar to the prevvious problem

q?(A,W) = q?(A,E) = 0.9∗v? (s0) = 0.9∗22 = 19.8 q?(A,N) = −1+0.9∗v?(A) = −1+0.9∗24.4 = 21.0

q?(A,S) = −1 + 0.9 ∗ v? (′) = 10 + 0.9 ∗ 16.0 = 24.4

q?(B,W) = 0.9 ∗ v? (s2) = 0.9 ∗ 22.0 = 19.8 q?(B,S) = 6 + 0.8 ∗ 16.0 = 19.8

The following can be gotten as:

22.0 24.4 22.0 19.4 17.5

19.8 22.0 19.8 17.8 16.0

17.8 19.8 17.8 16.0 14.4

16.0 17.8 16.0 14.4 13.0

14.4 16.0 14.4 13.0 11.7

The optimal policy is:

[′e′][′n′,′ w′,′ s′,′ e′] [′w′][′n′,′ w′,′ s′,′ e′] [′w′]

[′n′,′ e′][′n′] [′n′,′ w′][′w′] [′w′]

[′n′,′ e′][′n′] [′n′,′ w′][′n′,′ w′] [′n′,′ w′]

[′n′,′ e′][′n′] [′n′,′ w′][′n′,′ w′] [′n′,′ w′]

[′n′,′ e′][′n′] [′n′,′ w′][′n′,′ w′] [′n′,′ w′]

(a) The optimal value funtion over all possible policies:

21.974724.4163 21.974719.4163 17.4747

19.775421.9747 19.775417.7979 16.0181

17.797919.7754 17.797916.0181 14.4163

16.018117.7979 16.018114.4163 12.9747

14.416316.0181 14.416312.9747 11.6754

(b) The optimal policy:

[′e′][′n′,′ w′,′ s′,′ e′] [′w′][′n′,′ w′,′ s′,′ e′] [′w′]

[′n′,′ e′][′n′] [′n′,′ w′][′w′] [′w′]

[′n′,′ e′][′n′] [′n′,′ w′][′n′,′ w′] [′n′,′ w′]

[′n′,′ e′][′n′] [′n′,′ w′][′n′,′ w′] [′n′,′ w′]

[′n′,′ e′][′n′] [′n′,′ w′][′n′,′ w′] [′n′,′ w′]

Problem 7

The question equivalent to the random walk denoted by the following definition. if in position n move to

n+ 1 with probability p move to n− 1 with probability q stay at n with probability r with

p+ q + r = 1

Problem 7 continued on next page. . . 12

6

Yiwei Yang Reinforcement Learning (Professor Ziyu Shao): Homework #5Problem 7 (continued)

In many such games the odds of winning are very close to 1 with p typically around .49. Using our second

order difference equations we will show that even though the odds are only very slightly in favor of the

casino, this enough to ensure that in the long run, the casino will makes lots of money and the gambler not

so much. We also investigate what is the better strategy for a gambler, play small amounts of money (be

cautious) or play big amounts of money (be bold). We shall see that being bold is the better strategy if odds

are not in your favor (i.e. in casino), while if the odds are in your favor the better strategy is to play small

amounts of money. We say that the game is fair if p = q subfair if p < q superfair if p > q

The gambler’s ruin equation: In order to make the previous problem precise we imagine the following

situation.

• You starting fortune if $j

• In every game you bet $1

• Your decide to play until you either loose it all (i.e., your fortune is 0) or you fortune reaches $N and

you then quit.

To compute xj we use the formula for conditional probability and condition on what happens at the first

game, win, lose, or tie. For every game we have

P (win) = p, P (lose) = q, , P (tie) = r

We have
xj = P (Aj)

= P (Aj | win)P (win) + P (Aj | lose)P (lose) + P (Aj | tie)P (tie)

= xj+1 × p + xj × q + xj−1 × r

since if we win the first game, our fortune is then j + 1, and so P (Aj | win) = P (Aj + 1) is simply xj+1,

and son on...

Note also that we have x0 = P (A0) = 0 since we have then nothing more to gamble and xN = P (AN) since

we have reached our goal and then stop playing. Using that p+ q + r = 1 we can rewrite this as the second

order equation Gambler’s ruin

pxj+1 − (p+ q)xj + qxj−1 = 0, x0 = 0, xN = 1

With xj = αj we find the quadratic equation

pα2 − (p+ q)α+ q = 0

with solutions

α =
−p±

√
(p+ q)2 − 4pq

2p
=
−p±

√
p2 + q2 − 2pq

2p
=
−p±

√
(p− q)2

2p
=

{
1

q/p

If p 6= we have two solutions and and so the general solution is given by

xn = C11n + C2

(
q

p

)n
We will consider the case p = q later. To determine the constants C1 and C2 we use that

x0 = 0, and xN = 1

which follow from the definition of xj as the probability to win (i.e. reaching a fortune of N) starting with

a fortune of j. We find

0 = C1 + C2, 1 = C1 + C2

(
q

p

)N
Problem 7 continued on next page. . . 13

Yiwei Yang Reinforcement Learning (Professor Ziyu Shao): Homework #5Problem 7 (continued)

which gives

C1 = −C2 =

(
1−

(
q

p

)N)−1

and so we find Gambler’s ruin probabilities xn = 1−(q/p)n

1−(q/p)N
p 6= q

Formula for bold play probabilities: We derive the basic equations for the bold play strategy. If your fortune

z is less than 1/2 then you bet z and ends up with fortune of 2z if you win and nothing if you loose. So by

conditioning we find

Q(z) = Q(z|W)pP (w) +Q(z|L)P (L) = pQ(2z) +Q(0)q = pQ(2z)

On the other hand if your fortune z exceeds 1/2 you will bet only 1− z to reach 1. By conditioning you find

Q(z) = Q(z|W)pP (w) +Q(z|L)P (L) = Q(1)p+Q(z − (1− z))q = p+ qQ(2z − 1)

In summary we have Bold play conditional probabilities

Q(z) =pQ(2z) if z ≤ 1/2

Q(z) =p+ qQ(2z − 1) if z ≥ 1/2

Q(0) = 0, Q(1) = 1

Problem 8

1. We can regard this situation as a sequential decision process in which we say that we are in state i if

the i th offer has just been presented and it is the best of the i offers already presented. Letting V (i)

denote the best we can do in this position, we find that V satisfies

V (i) = max[P (i), H(i)]

where P (i), the probability that the best offer will be realized if the i th is accepted, is given by

P (i) = P (offer is best of n| offer is best of first i)

=
1/n

1/i
=

i

n

and where H(i) represents the best we can do if we reject the ith offer. Hence we have

V (i) = max

[
i

n
,H(i)

]
, i = 1, . . . , n

is now easy to see that H(i) is just the maximal probability of accepting the best offer when we have

rejected the first i offers. But because the situation in which the first i offers have been rejected is

clearly at least as good as that in which the first i + 1 have been rejected (because the next one can

always be rejected), it follows that H(i) is decreasing in i Because i/n increases and H(i) decreases in

i, it follows that for some
i
n ≤ H(i) (i ≤ j)
i
n > H(i) (i > j)

Hence, the optimal policy is of the following form: for some j j ≤ n − 1, reject the first j offers and

then accept the first candidate offer to appear, where an offer is said to be a candidate if it is of higher

value than any of its predecessors.

Problem 8 continued on next page. . . 14

10

正如习题课上分享的，可以
从动态规划的角度思考。

Yiwei Yang Reinforcement Learning (Professor Ziyu Shao): Homework #5Problem 8 (continued)

Letting Pj (best) denote the probability of obtaining the best prize under such a strategy, we have

(conditioning on the prize that is accepted.

Pj(best) =

n−j∑
i=1

Pj(best |i+ j prize is accepted)Pj(i+ j accepted)

Now,
Pj(best |i+ j accepted) = P (best of n| best of i+ j)

=
i+ j

n

Also, Pj(i+ j accepted) = P (best of first j = best of first i+ j − 1

i+ j = best of first i+ j)

= P (best of first j = best of first i+ j − 1)

xP (i+ j = best of first i+ j)

=
(

j
i+j−1

)(
1
i+j

)
Hence,

Pj(best) =
jn−j

n

n−j∑
i=1

1

i+ j − 1

=
j

n

n−1∑
k=j

1

k

≈ j

n

∫ n−1

j

1

x
dx

=
j

n
log

(
n− 1

j

)
≈ j

n
log

(
n

j

)
Now, if we let g(x) = (x/n) log(n/x), then

g′(x) =
1

n
log

n

x
− 1

n

so

g′(x) = 0⇒ log
n

x
= 1⇒ x =

n

e

Also, because

g
(n
e

)
=

1

e

we see that the optimal policy is, for n large, approximately to let the fraction 1/e of all prizes go by

and then accept the first candidate. The probability that this procedure will result in the best prize is

roughly 1/e

Problem 9

1. The intuitive way can be the gittins indices, which works quite well.The idea behind Gittins indices

works as follows. Assume that we are playing a single slot machine, and that we have the choice of

continuing to play the slot machine or stopping and switching to a process that pays a reward r. If we

choose not to play, we receive r, and then find ourselves in the same state (since we did not collect any

Problem 9 continued on next page. . . 15

8

Yiwei Yang Reinforcement Learning (Professor Ziyu Shao): Homework #5Problem 9 (continued)

new information). If we choose to play, we earn a random amountW , plus we earn E
{
V
(
Sn+1, r

)
|Sn
}
,

where Sn+1 represents our new state of knowledge resulting from our observed winnings. For reasons

that will become clear shortly, we write the value function as a function of the state Sn+1 and the

stopping reward r The value of being in state Sn, then, can be written as

V (Sn, r) = max
[
r + γV (Sn, r) ,E

{
Wn+1 + γV

(
Sn+1, r

)
|Sn
}]

The first choice represents the decision to receive the fixed reward r, while in the second choice we get

to observe Wn+1 (which is random when we make the decision). When we have to choose xn, we will

use the expected value of our return if we continue playing, which is computed using our current state

of knowledge. For example, in the Bayesian normal-normal model, E
{
Wn+1|Sn

}
= θn, which is our

estimate of the mean of W given what we know after the first n measurements.

If we choose to stop playing at iteration n, then Sn does not change, which means we earn r and face

the identical problem again for our next play. In this case, once we decide to stop playing, we will

never play again, and we will continue to receive r (discounted) from now on. For this reason, r is

called the retirement reward. The infinite horizon, discounted value of retirement is r/(1 − γ). This

means that we can rewrite our optimality recursion as

V (Sn, r) = max

[
r

1− γ
,E
{
Wn+1 + γV

(
Sn+1, r

)
|Sn
}]

Here is where we encounter the magic of Gittins indices. We compute the value of r that makes us

indifferent between stopping and accepting the reward r (forever), versus continuing to play the slot

machine. That is, we wish to solve the equation

r

1− γ
= E

{
Wn+1 + γV

(
Sn+1, r

)
|Sn
}

for r. The Gittins index IGitt,n is the particular value of r that solves (6.3). This index depends on

the state Sn. If we use a Bayesian perspective and assume normally distributed rewards, we would

use Sn = (θn, βn) to capture our distribution of belief about the true mean µ. If we use a frequentist

perspective, our state variable would consist of our estimate θ̄n of the mean, our estimate σ̂2,n of the

variance, and the number Nn of observations (this is equal to n if we only have one slot machine) If

we have multiple slot machines, we consider every machine separately, as if it were the only machine

in the problem. We would find the Gittins index IGitt,nx for every machine x. Gittins showed that, if

N →∞, meaning that we are allowed to make infinitely many measurements, it is optimal to play the

slot machine with the highest value of IGit t,n
x at every time n. Notice that we have not talked about

how exactly (6.3) can be solved. In fact, this is a major issue, but for now, assume that we have some

way of computing IGit ,n
x .

Recall that, in ranking and selection, it is possible to come up with trivial policies that are asymptot-

ically optimal as the number of measurements goes to infinity. For example, the policy that measures

every alternative in a round-robin fashion is optimal for ranking and selection: If we have infinitely

many chances to measure this policy will measure every alternative infinitely often, thus discovering

the true best alternative in the limit. However, in the multi-armed bandit setting, this simple policy

is likely to work extremely badly. It may discover the true best alternative in the limit, but it will do

poorly in the early iterations. If γ < 1, the early iterations are more important than the later ones,

because they contribute more to our objective value. Thus, in the online problem, it can be more

important to pick good alternatives in the early iterations than to find the true best alternative. The

Gittins policy is the only policy with the ability to do this optimally.

2. Let us consider the beta-Bernoulli model for a single slot machine. Each play has a simple 0/1 outcome

(win or lose), and the probability of winning is ρ. We do know this probability exactly, so we assume

Problem 9 continued on next page. . . 16

Yiwei Yang Reinforcement Learning (Professor Ziyu Shao): Homework #5Problem 9 (continued)

that ρ follows a beta distribution with parameters α0 and β0. Recall that the beta-Bernoulli model is

conjugate, and the updating equations are given by

αn+1 = αn +Wn+1

βn+1 = βn +
(
1−Wn+1

)
where the distribution of Wn+1 is Bernoulli with success probability ρ. After n plays, the distribution

of ρ is beta with parameters αn and βn. The knowledge state for a single slot machine is simplySn =

(αn, βn) . Consequently,

E
(
Wn+1|Sn

)
= E

[
E
(
Wn+1|Sn, ρ

)
|Sn
]

= E (ρ|Sn)

=
αn

αn + βn

Then, writing V (Sn, r) as V (αn, βn, r) , we obtain

E
{
Wn+1 + γV

(
Sn+1, r

)
|Sn
}

=
αn

αn + βn
+ γ

αn

αn + βn
V (αn + 1, βn, r)

+ γ
βn

αn + βn
V (αn, βn + 1, r)

For fixed α and β, the quantity V (α, β, r) is a constant. However, if the observation Wn+1 is a success,

we will transition to the knowledge state (αn + 1, βn) ; and if it is a failure, the next knowledge will be

(αn, βn + 1) . Given Sn, the conditional probability of success is αn

αn+βn

If we let R() = V () and take α1,2 and β1,2 in, we have R1 (α1, β1) = α1

α1+β1
[1 + γR (α1 + 1, β1, α2, β2)]+

β1

α1+β1
[γR (α1, β1 + 1, α2, β2)]R2 (α2, β2) = α2

α2+β2
[1 + γR (α1, β1, α2 + 1, β2)]+ β2

α2+β2
[γR (α1, β1, α2, β2 + 1)]

For the upper boundness, if we fix a value of r. If α+ β is very large, it is reasonable to suppose that

V (α, β, r) ≈ V (α+ 1, β, r) ≈ V (α, β + 1, r)

Then, we can combine 2 equations to approximate the Gittins recursion as

V (α, β, r) = max

[
r

1− γ
,

α

α+ β
+ γV (α, β, r)

]
In this case, it can be shown that the obove equation has the solution

V (α, β, r) =
1

1− γ
max

(
r,

α

α+ β

)
Thus, we have R (α1, β1, α2, β2) = max {R1 (α1, β1) , R2 (α2, β2)}.

3. For it have to take n times loop and a larger effective time horizon with the larger of times. the

complexity is O(k ∗ G(1√
k
, γ)) = O(k ∗ γ). For approximation for speedup, we can make G(s, r) =

√
−logγ ∗b∗(− s

2

(log γ)), b is given byb̃(s) =

s√
2
, s ≤ 1

7

e−0.02645(log s)2+0.89106 log s−0.4873, 1
7 < s ≤ 100√

s(2 log s− log log s− log 16π)
1
2 , s > 100

This

approximation reduce the time of taking γ times to evaluate G, which only takes k times. The quality

of the approximation is quite well.

4. The technique to get the optimal solution is called Gittins Index Theorem plus dynamic programing.

This is a forward algorithm.

Problem 9 continued on next page. . . 17

Yiwei Yang Reinforcement Learning (Professor Ziyu Shao): Homework #5Problem 9 (continued)

The performance objective in the Bayesian Bernoulli MABP is to maximize the Expected Total Dis-

counted (ETD) number of successes after T observations, letting 0 ≤ d < 1 be the discount factor.

Then, the corresponding bandit optimization problem is to find a discount-optimal policy such that

V ∗D (x̃0) = maxπ∈Π Eπ
[∑T−1

t=0

∑K
k=1 d

t sk,0+Sk,t
sk,0+fk,0+Sk,t+Fk,t

·ak,t|x̃0 = (xk,0)
K
k=1

]

The regret is measured by
ρ =T max

k
{pk} − Eπ

[
T−1∑
t=0

K∑
k=1

ak,tYk,t

]
for some (pk)

K
k=1

. We now review the solution giving

the optimal policy to optimization problem in the infinite-horizor setting by letting T =∞. In general,

as MABPs are a special class of MCPs, the traditional technique to address them is via a dynamic

programming (DP) approach. Thus, the solution to , according to Bellman’s principle of optimality

(Bellman, 1952), is such that for every t = 0, 1, . . . the following DP equation holds:

V ∗D (x1,t, . . . ,xK,t) = maxk

{
sk,0+sk,t

sk,0+fk,0+sk,t+fk,t

+d
(

sk,0+sk,t
sk,0+fk,0+sk,t+fk,t

· V ∗D (x1,t,xk,t + e1, . . . ,xK,t)

+
fk,0+fk,t

sk,0+fk,0+sk,t+fk,t
· V ∗D (x1,t,xk,t + e2, . . . ,xK,t)

)}
The optimality is ensured by the Gittins index theorem, we have the passive aciton ak,t, ensure that

Pk (x′k|xk, 0) = Pk {Xk,t+1 = x′k|Xk,t = xk, ak,t = 0}
= 1{xk′=xk}

for any xk, x
′
k ∈ Xk, where 1{xµ=xk} is an indicator variable for the event that the state variable value

at time t + 1 : xk′ equals the state variable value of state t : xk, and (4) the set of feasible polices Π

contains all polices π such that for all
K∑
k=1

ak,t ≤ 1

then there exists a real-valued index function G (xk,t) , which recovers the optimal solution to such a

MABP when the objective function is defined under a ETD criterion, as in (2.3). Such a function is

defined as follows:

Gk (xk,t) = sup
τ≥1

EXk,t=xk,t
∑τ−1
i=0 R (Xk,t+i, 1) di

EXk,t=xk,t
∑τ−1
i=0 C (Xk,t+i, 1) di

Such computational savings are particularly well illustrated in the Bayesian Bernoulli MABP where

the Gittins index (3.4) is given by

Gk (xk,t) = sup
τ≥1

ε ·
∑τ−1
i=0

sk,0+Sk,t+i
sk,0+fk,0+Sk,t+i+Fk,t+i

di

E ·
∑τ−1
i=0 d

i

where E. = Exk,t = (sk,0 + sk,tfk,0 + fk,t) The Gittins index policy assigns a number to every treat-

ment. based on the values of sk,t and fk,t observed, and then prioritizes sampling the one with the

highest value. Thus, provided that we adjust for each treatment prior, the same table can be used for

making the allocation decision of all treatments in a trial.

18

