Reinforcement Learning: Homework #5

Due on May 15, 2020 at 11:59pm

Professor Ziyu Shao

Yiwei Yang
2018533218

384

Yiwei Yang

Reinforcement Learning (Professor Ziyu Shao): Homework #5

Problem 1

Problem 1

10

1. Applying the Bellman function for value iteration U y1(s) <= R(s) +ymaxaea(s) o P (s']s,a) U (8'),
L

)
as we can see for the optimal value recursive, VN,n > N,V (s,) = 1= . The induction equation is
V(sn—1) =YV (sn), for n € N and the starting state: V(s1) = % The problem can be reduced to

. . . k
the isometric summation: V(G) = X532,V (sk) = 572, = = ﬁ
. An initial policy with action a in both states leads to an unsolvable problem. The initial value deter-

mination problem has the form:

V(s1) = 1=
V(sn—1) =7V (sn), for n €N
V(G) =

For v =0, it’s clear to see V(s) = 1, for k € N, meanwhile we have Vk, 7(sr) = ag, thus, it stucks to
optimal policy.

If v > 0, from the inconsistent state induction equaiton, we have that the value of v does not change
the order. So, we can find the optimal policy after all; though, the value function has relation with ~.
The difference between v € (0,1) and 7 € [1,00), is that the former value can converge to a constant,
while the latter diverges to oo.

. Adding constants does not affect the optimal policy, but it does change the value function.

For theoratical proof:

oo o0

new (8i) = ZVt (re+c) = ZVtTt + Z’)’tc = vgiq (8i) +

1—
t=0 t=0 t=0 v

C
v

For simulation result:

We set up a literally same model as UCB AI courses does, denote n = 9, the setup is elaborated as
below:

function VALUE-ITERATION(mdp, €) returns a utility function

inputs:mdp, an MDP with states S, actions A(s), transition model P (s'|s,a) rewards R(s), discount
v, €, the maximum error allowed in the utility of any state

local variables: U, U’, vectors of utilities for states in .S, initially zero.d, the maximum change in the
utility of any state in an iteration

Problem 1 continued on next page. . . 2

Yiwei Yang

Reinforcement Learning (Professor Ziyu Shao): Homework #5Problem 1 (continued)

repeat

for each state s in S do

if |U’|s] = Uls|| > § then 6 < |U|

until 6 < e(1—7)/v
return

U« U;5+0

U'[s] + R(s) +~ max P (s]s,a)U|s']

a€A(s)

s = Uls]]

ry

The result is done by merely adding the constant reward ¢, we take the step 15.

before adding c:

Adding ¢ = 1:

0.56999141

0.71061644

0.83561644

1.

0.44499134

0.66504707

0.52054795

-1

0.30913886

0.22232089

0.34732113

0.08650751

0.56999142

0.71061644

0.83561644

1.

0.44499138

0.66504707

0.52054795

-1

0.30913898

0.22232101

0.34732117

0.0865076

As we can see, adding constants ¢ does not affect the optimal policy.

4.
tow ()= 3 alre) =a 3 atrek Do tae= oy (50 + 725
(a) Similarly if @ > 0, the optimal policy remains unchanged.
(b) a =0, all policies are optimal
(¢) a < 0,optimal policy is to stay away from G.
Problem 2]()

1. As the > ;2 ~"r¢ and the value function:

Iteration ‘ Viso) V(s1) Vi(s2)
2

0 00 0 i
1 00 1 o0
2 00 00 0

As for the action a; from state sg at time step ¢ = 0, we can simply apply the isometric series and get

V:0+7+72+...:ﬁ,

2. As the value function depicted above, for the action as from state sg at time step ¢ = 0 can be written

as the constant series V = % +0+0+4+---= % So, it’s clear that the optimal stucks to a;.

Problem 2 continued on next page. .. 3

Yiwei Yang Reinforcement Learning (Professor Ziyu Shao): Homework #5Problem 2 (continued)

3. We can simply get the bounding by letting Q1 be the Q(sg,az2) = % constant situation when
Vi(s2) = 0, because value iteration keep choosing the sub-optimal action while @ (sg, a2) > Q (so,a1),
this bound is clear. According to the above transition matrix, we have teh value iteration updates
recursive:Qn+1 (s0,a1) = 04+V,, (s1) and V41 (s1) = 1 ++V,, (s1)

1_ n
Qun (01) = 0 (L 9V5 (50) =3 (105" 49"Voca o) = (T2)

Then we apply the basic unequality.
Qn+1 (s0,01) = Q (50, a2)

. 1— ,Yn* _ ,YQ
1—7 1—7

n'=——
log(7)
__log(1—7)
log(1 4+~ —1)
24+~v-1
> log(1 —W)ﬁ
v+1
—log1/(1 —’Y)m

21 1 1
=2 %\1-5) 1

Because log(1 + z) < 23_—’; for x € (—1,0], O.E.D.

Problem 3] ()

1. Generally, we have the error bound if ||U; — U*|| < e then [|[U™ — U*|| < 2e7y/(1 —+). Because of the
fact that (s, w(s)) gives the expected return when starting in s, and 7*(s) is 7*(s) = argmax, Y, P (s'|s,a) U (¢'),
we can simply get the unequality Q(s,m(s)) > Q (s,7*(s)) by proving ||Q — Q|| <e.

V*(s) = Q"(s,m(s) = V*(s) = Q(s,m(s)) + Q(s,m(s)) — Q" (s, 7(s))
<VHs) = Q(s,m "(s)) +e
= Q" (5,7°(5)) — Q(5,7*(5)) +¢

< 2¢

2. V*(s) — Vz(s) can be unfolded.

V*(s) = Vi(s) =V*(s) — Q" (s,7(s)) + Q" (s,7(s)) — Vi (s)
<2+ Q%(s,m(s)) — Qr(s,7(s))

By getting the expectation of both side. Ey [V* (s') — Vj (8')] < 2

Ans = 2e + 4By [V* (s') — Vi (8')]
O.ED

3. Q*(s,m(s)) represents that the strategy is currently used and the optimal strategy is continued later,
recursively. Because in that case, from the graph we have Q*(s1,g0) = 13 (51, stay) == fj’zy
Meanwhile, the V*(s1) = (s9) = 12_7;

Problem 3 continued on next page. .. 4

Yiwei Yang Reinforcement Learning (Professor Ziyu Shao): Homework #5Problem 3 (continued)

4. The question equals to finding a proof that one can find a policy that makes the equation. First,
observe that 2¢ is the gap between two state-value function, the policy with state-action value function
Q that 7(s1) = stay always holds can be constructed. In that case, to prove the boundness, define the
situation near that consistent tie rule. let Q(sl,go) = Q*(s1,90) —€ and Q(sl, stay) = Q*(s1, stay) +¢.

Eventually we have(a little bit complicated) Vi (s1) — V * (s1) = — 1272 the bound is tight. O.E.D.

Problem 4]()

1. lemma Some Denotion

(a) Cumulative discounted return
o0
Ry =ris1 + 2 +Vrgs + -0 = Z’W’Hkﬂ
k=0

(b) Policy Policy can be written as 7(s,a). That is, the probability that action A was performed in
state S, which is used to describe a series of actions. It is a function that can take a state and an
action and return the probability of taking that action in the current state.

(¢) Value function
i. state value function
V7(s) = Ex [Re|st = 9]
ii. action value function
Q7 (s,a) = E; [Re|st = s,a: = d]
(d) Probability of state transfer

P2, =Pr(si1 1 =5'|s; = s,a; = a)

(e) return expectation
R, =E[rip1|st = s,8041 = ', a; = a
(f) Markov decision-making process It is compose of 4 state M = {S, A, P, R}, all the state transform
observe the Markov property.
(g) Optimal Policy Define a partial ordering over policies, we have m > 7/ if v, (s) > v,/ (s), Vs

(h) Optimal Policy Funciton The optimal state-value function v, (s) is the maximum value function
over all policies
v4(8) = max v, (s)
™

The optimal action-value function ¢.(s,a) is the maximum action-value function over all policies
g«(s,a) = max ¢ (s, a)

2. lemma Bellman function
vr(8) = Eyr [Ge] St = 9]
=Er [Rip1 + 7G5St = ¢]

= Zﬂ'(a\s) Z ZP(S/W\& a) [r +Ex [Gi41]Si41 = '] As the definition below

s’

= Zw(a\s) Zp(s’,ﬂs, a)[r+~yvg (s)] forallse S

s’',r

Gr(8,a) = Ex[G¢]S; = s, Ay = a

Problem 4 continued on next page. .. 5

Yiwei Yang Reinforcement Learning (Professor Ziyu Shao): Homework #5Problem 4 (continued)

we first have ¢, (S, At) = Ex[Gt|St, A¢] and ¢ (St41, Aty1) = Ex[Giy1|Stt1, Ars1].

Then according to Adam’s law with extra conditioning we have E[E(Y|X, Z)|Z] = E(Y|Z), denote
Y = Gt+17 Z = (St;At) and X = (St+1,At+1)

We have
E[Gi41]St, A] = E[E[Gi41]St41, A1, St Ad|St, Al = E[E[Ge41|St41, Aei1]|St, At] = Elgn (Se41, Aeg1)|St, Ad

ThUS, we have Eﬂ[Gt+1|St =S, At = a] = Eﬂ—[qﬂ(st+1,At+1)|St =S, At = a]
After that, we can tale the above equation in:q, (s, a) = E;[G¢|St, At] = Ex[Riy1 +7Gt41|S: = s, Ar =
a] = Ex[Rip1 + YEr[qx (St 41, Aty1)|Se = 8, Ay = a] = Ex[Riq1 + 7Gx (St 41, At41)|Se = 5, Ay = a]

3. the proof of Bellman equation for Markov Reward Processes The value function can be decomposed
into two part which is the immediate reward R;+1 and discounted value of successor state yv(Sgy1).

v(s) = E[G¢|St = $]

Because of Adam’s theorem and Markov Property, we have V(S;41) = E[G¢41|S¢+1] Because of Adam’s
Law E[E(Y|X)] = E(Y), we also have Adam’s Law with extra conditioning E(E(Y|X)) = E(Y) j=/
EIE(Y|X, Z)|Z] = E(Y|Z)

Ans =& [Rt+1 +YRiyo2 + V2 Rigs +...|S: = 5}
=E [Rt+1 +y (Rt+2 + 'YRtJrB + ..) |St = S]

We have
Ans = E[G|Si=s]

=E[Riy1 +7Gi41]S: = 5]

= E[Ri11|Si=s] + 7E[Gr41]51=s]

= E[Ri11[Si=s] + YE[V (St+1)|St=s]
=E[Riy1 + 70 (St41) [t = 3]

Continue, we can apply the LOTE

RPN T ‘
l!l-""."‘u_'-"l L

Ans = Ry + Z E[V(Si+1)|St = 8, St41=5')P(St41=5|5t =)
s'es

=R,+7 Z V(s")Pygr
s'eS

4. the proof of Bellman Expectation equation for Markov Process Processes

Problem 4 continued on next page. .. 6

Yiwei Yang Reinforcement Learning (Professor Ziyu Shao): Homework #5Problem 4 (continued)

For V™, we have simply apply the MDP property and LOTP to get

Vi(s) = Ex[Ge|S: = 8] = Z E;[Gi|S: = s, As = a] = Z m(al$)gx(s,a)

acA a€A

(rls.a) <1 5,0

For @, the difference is merely value and reward function difference:
Elgr(Stv1, At 1)1 = 5,8 =5,A = a] = Blgz (Sty1|Ai11]St11 = Sl)]

=Y Elgx(Ser1, Ae11)|Si41 = 8, Aypr = a] % P(Aryr = alSyp1 =)
acA

= Z ar(s',a)m(als’)

acA
= v.(s")

So, we can take in to from above and applyt the LOTE.

Ans = Z E[qﬂ(St+1,At+1)|St+1 = Sl,St = S,At = a] * P(St—i-l = S/|St = S,At = G,)
s'eS

—Zvﬂ)% P,

acA

So,
qn(s,a) = Ex[Riv1 + Yqr(Stt1, Ars1)|St = s, Ay = a
= E[Ry41]S: =5, Ay = a] + VE[qr (Stq1, A1) | S = s, A = d]

—R“—i—fyZP (s
s'eS

o [5) +1 3

¢ f [4
A I:_‘;l -_:I I:_':_'l

Problem 4 continued on next page. .. 7

Yiwei Yang Reinforcement Learning (Professor Ziyu Shao): Homework #5Problem 4 (continued)

As for the second layer. Take the ¢r(s,a) = R+, cg Plrr (8') for the second layer to the first
layer Vr(s) = 2_,c 4 w(als)gx (s, @)

vals) = 3 w(als) (R‘; D <s’>>

acA s'eS

e | &,)4 8 @

/ R

L

b
ol o) i @ \- .

Similarly, reversely take in the equation above we have: ¢r(s,a) = RI+v) ,cgand P, = > 47 (d'[s") gx (s',a")

The Bellman expectation equation can also be expressed concisely using the induced MRP.
Vg =R™ + P v,

with direct solution
Up = (I - ,erTr)—l R”

5. the proof of Bellman Optimality equation for Markov Process Processes An optimal policy can be found
by maximizing over ¢.(s, a)

[1 ifa=argmaxgq.(s,a)
m+(als) = { 0 otherwise *<4

Because, if 7' is a random optimal policy, 0 < 7'(als) < 1,Va € A, we have V,.(s) = Virs) =

S pa € Ar'(als)gr(s,a) < ¥ pa € A (als)g. (s,0) < ¥ pa € Ax'(als)g.(s,a*) = ¢.(s,a”)
So, we got Vi (s) = Ve (8) = 3 ge q 7 (al3)gs- (5. 0) = (s, a”)

Uul(8) 4 8

gs(s,0a) <+ a

From the above equation we know that the choice is between picking exactly the action 7, (als) and pick-
ing a probability distribution over potentially optianal and non-optional actions, and pick best action
preferably. After all based on first and second equation, we have v, (s) = ¢.(s,a*) = maz,caq«(s, a)

Problem 4 continued on next page. .. 8

Yiwei Yang Reinforcement Learning (Professor Ziyu Shao): Homework #5Problem 4 (continued)

el 5, 0) «+ 5.0

vo(s') — 5

Firstly, qr(s,a) = R§+7 D cg Powrr (8'), s0 we get i (s, a) = mazqr(s,a) = Ry+y), cg Piymar vy (s') =
RS 47 s Pov (5)

Then applying the LOTE, we get Ans = Y g E[v.(Si11)|St41 = 87,8 = 5,A; = a] x P(Si41 =

S'S; = s, Ar = a) =g V(') * PS,

Lastly, we have, q.(s,a) = E[Ryy1 +YVi(Si41)|S0, Al = RS+ 73 cg Plva(s')

|"__‘_I:.n|:l — M e

L I SR

Apply the same techniques with Expectation function we have: v,(s) = max, (RZ +7 Y cs Plivs ()

e | &, 00 = &, 0

R !
[[.‘- R

Apply the same techniques with Expectation function we have: g.(s,a) = RZ4+v>_,, cs Péy maxy g« (s',a")
Also, we have the matrix forms of Optimality equation

p(s1|s1,a1) [r (s1,a1,51) + s (51)] + P (5281, 01) [r (52,01, 51) + Yvs (52)]

v. (51) == max p(s1]s1,a2) [r (s1,a2,51) + s (51)] + P (s2]51, a2) [(82, a2, 51) + YU« (52)]

D (81181, an) [(81, Qn, 81) + Y0s (51)] + P (82|51, an) [(82, Gn, $1) + YUk (82)]

Yiwei Yang

Reinforcement Learning (Professor Ziyu Shao): Homework #5

Problem 5

Problem 5

10

1. First solve the MRP by taking them into the matrix solving equation. We apply the state transition

probability matrix P =

Cl C2 C3 P.s Pyy FB Sleep
C1 0.5 0.5
C2 0.8 0.2
C3 0.0 04
Pass 1.0
Py | 02 04 04
FB | 0.1 0.9
Sleep 1
[c1 -2
C2 -2
U(l) Rl 7)11 Pln U(l) C3 2
Taking the matrix into : = : + : : ,ewget R=| Pass 10
v(n) Rn Pua Pn v(n) Py 1
FB -1
| Sleep 0
[-12.5432]
1.4568
4.3210
Eventually, applyin the equation V = (I —yP)~!R. We have if v = 1, we have 10.0 which
0.8025
-22.5432
L 0 |

is in accordance with the simulaiton result.

. First let us compute some of the inferior 7 value of the state. We get w(study|s;) = 0.5, m(Facebook|s,) =

0.5, m(sleep|sz) = 0.5, w(study|ss) = 0.5, w(pub|s3) = 0.5. And we can get the value of P. Pty =1,
prub = 0.2, PP = 0.4, PP =0.4.

Then we can get v; = vr(s1) = 0.5(RS™W + 1% 1% Vi(sg)) + 0.5(RECCO0R 11 41 Vp(sq)) =
0.5(—2 + v2) + 0.5(—1 + vy)

vl -1.3
. . v2 2.7 .. .
Similarly, after get all the function, we can get A Similarly, take the computed v; into the
v .
vd -2.3
bellmen equation for MDP ¢, we have ¢ (s1, study) = —2+1%vy = —2+2.7 = 0.7,¢-(s1, Facebook) =

—14+1xvy=-1423=-3.3, ¢gz(s2,8leep) =0+ 0 =0, ¢r(s2,study) = -2+ 1xv3 =—-2+74 =
5.4, gr(ss3,study) = 10+ 0 = 10, gr(ss,pub) = 1 4+ 0.2 % (—=1.3) + 0.4 * (2.7) + 0.4 x 7.8 = 4.78,
Gr (84, facebook) = =1+ vy = —1 —2.3 = —3.3, ¢ (s4,quit) = 0+ v, = 0— 1.3 = —1.3 As for the state
action function, we have

. First let us test the optimality bellman equation of s1, we have Vi (s1) = maz{—24Vi(s2), —14+Vi(s4)},
the former is aciton=study and the latter is when action=facebook. Ans = mazx{—-2+8,—1+6} =6,
so a*(s1) = study.

Then apply the q optimality funtion to calculate the following one, that is V; (sleep) = 0Vrr, so we have
qr (52, sleep) = RSP 4+ 1 % vy (sleep) = 0 + OV, so 7(s2, sleep) =0

Also, on the other hand, we have ¢,(s3.study) = Rig“dy + 1 % Vi(sleep) = 10V, so

Problem 5 continued on next page. ..

10

Yiwei Yang Reinforcement Learning (Professor Ziyu Shao): Homework #5Problem 5 (continued)

@« (83, study) = 10

Similarly, we have g, (s1, study) = —2+max[0, . (s2, study)], . (s1, facebook) = RIacebook .~ pHaccbooks

mazx q.(s4,a’) = —1 + max|q.(s4, facebook), q.(sa, quit)], and q.(sz, sleep) = 0, g« (s, study) = —2 +
maz[10, 1,(ss, pub)], g«(s3, study) = 10, g.(ss, pub) = 14+0.2xmax[g.(s1, study), ¢.(s1, framework)]+
0.4xmax[g.(s2, study), 0]4+0.4xmax[q«(ss3, pud), 10], g« (s4, facebook) = —1+max|q.(s4, Facebook), q.(s4, quiy)],
4+ (54, quit).

Also, we have the bound got by max() func. We have ¢, (s2, study) = —2 + max[10, g.(s3, pub)] > 8,

g« (81, study) > 6, q.(s3, pub) = 0.6 + 0.6 * q.(s2, study) + 0.4max|q.(ss3, 76), 10]

By max() function’s bound, we have ¢, (ss, pub) = 0.6 + 0,

v,(81) =6
Vi (82) = 8
Enentually, we have | wv,(s3) =10
V(84) =6

vi(sleep) =0

Problem 6]()

1. The original formula is:

Zyes ZP(S’,rls,a) =1,Vs € S,a € A(s)

s reR

As in a finite MDP, the sets of states, actions, and rewards (8,.4, and R) all have a finite number
of elements. In this case, the random variables R; and S; have well defined discrete probability
distributions dependent only on the preceding state and action. That is, for particular values of these
random variables, s’ € S and r € R, there is a probability of those values occurring at time ¢, given
particular values of the preceding state and action:

p(s',rls,a) =Pr{S; =5, Ry =7|S;_1 = s, A1 = a}

forall s’,;s € S,r € R, and a € A(s). The function p defines the dynamics of the MDP. The dot over the
equals sign in the equation reminds us that it is a definition rather than a fact that follows from previous
definitions. The dynamics function p: § x R x § x A — [0,1] is an ordinary deterministic function
of four arguments. The | in the middle of it comes from the notation for conditional probability, but
here it just reminds us that p specifies a probability distribution for each choice of and a, that is, that
Yoves 2rer P (s rs,a) =1, for all s € S,a € A(s)

For episodic tasks the set of terminal and non-terminal states can be denoted as S+. Therefore, the
S s'eSY re Rp(s,r|s,a) =1,Vs € ST,a € A(s) as the dynamics of the MDP in an episodic task
include as a possible transition those ending in a terminal state.

2. Applying the simulation:
(a) The optimal value funtion over all possible policies:

21.974724.4163 21.974719.4163 17.4747
19.775421.9747 19.775417.7979 16.0181
17.797919.7754 17.797916.0181 14.4163
16.018117.7979 16.018114.4163 12.9747
14.416316.0181 14.416312.9747 11.6754

Problem 6 continued on next page. .. 11

Yiwei Yang

Reinforcement Learning (Professor Ziyu Shao): Homework #5Problem 6 (continued)

(b) The optimal policy:

3. Let us do the calculation similar to the prevvious problem

g (A, W) = g (A, E) = 0.9%v, (s9) = 0.9%22 = 19.8 ¢, (A, N) =
~1+0.9%v, (') =10+ 0.9 % 16.0 = 24.4

Q*(A7S) =

4 (B,W) =0.9% 0, (s3) = 0.9%22.0 =19.8 ¢, (B, S) =6+ 0.8 % 16.0 = 19.8

The following can be gotten as:

[
’
[
[

22.0 | 244 | 22.0 | 194 | 17.5
19.8 | 22.0 | 19.8 | 17.8 | 16.0
17.8 | 19.8 | 17.8 | 16.0 | 144
16.0 | 17.8 | 16.0 | 14.4 | 13.0
14.4 | 16.0 | 14.4 | 13.0 | 11.7
nw, s €] W'\’ W,
n/] [/ & w/] [/w/
n/] [/ & w/] [/n// w]
TL/] [/ & wl] [/n/’/ w]
'] 0w w]

(a) The optimal value funtion over all possible policies:

(b) The optimal policy:

Problem 7 6

The question equivalent to the random walk denoted by the following definition. if in position n
n + 1 with probability p move to n — 1 with probability ¢ stay at n with probability r» with

21.974724.4163
19.775421.9747
17.797919.7754
16.018117.7979
14.416316.0181

21.974719.4163
19.775417.7979
17.797916.0181
16.018114.4163
14.416312.9747

ptag+tr=1

The optimal policy is:

11! s /// 1,00
¢l [

17.4747
16.0181
14.4163
12.9747
11.6754

—140.9%0, (4) = —1+40.9%24.4 = 21.0

move to

Problem 7 continued on next page. ..

12

Yiwei Yang Reinforcement Learning (Professor Ziyu Shao): Homework #5Problem 7 (continued)

In many such games the odds of winning are very close to 1 with p typically around .49. Using our second
order difference equations we will show that even though the odds are only very slightly in favor of the
casino, this enough to ensure that in the long run, the casino will makes lots of money and the gambler not
so much. We also investigate what is the better strategy for a gambler, play small amounts of money (be
cautious) or play big amounts of money (be bold). We shall see that being bold is the better strategy if odds
are not in your favor (i.e. in casino), while if the odds are in your favor the better strategy is to play small
amounts of money. We say that the game is fair if p = ¢ subfair if p < g superfair if p > ¢

The gambler’s ruin equation: In order to make the previous problem precise we imagine the following
situation.

e You starting fortune if $;
e In every game you bet $1

e Your decide to play until you either loose it all (i.e., your fortune is 0) or you fortune reaches $N and
you then quit.

To compute z; we use the formula for conditional probability and condition on what happens at the first
game, win, lose, or tie. For every game we have

P(win)=p, P(lose)=gq, ,P(tie)=r

We have
zj = P(4)
= P (A;| win) P(win) 4+ P (A;| lose) P(lose) + P (A,| tie) P(tie)
=Zj+1 Xp + x;Xq + xj_1XT

since if we win the first game, our fortune is then j + 1, and so P (A,| win) = P (A; + 1) is simply z,41,
and son on...

Note also that we have xg = P (Ap) = 0 since we have then nothing more to gamble and xy = P (Ay) since
we have reached our goal and then stop playing. Using that p 4+ g+ r = 1 we can rewrite this as the second
order equation Gambler’s ruin

prjt1 — (p+ @)z +qrj-1 =0, 20=0,2ny =1
With z; = o7 we find the quadratic equation
pe® — (p+qa+q=0

with solutions

oo PEVOT?—Apg _ —pEVP+¢?—2pg _ —pE V(P —q)? { 1

2p 2p 2p q/p

If p # we have two solutions and and so the general solution is given by
n)"
T, = C11" + Cy <)
p

We will consider the case p = ¢ later. To determine the constants C; and Cs we use that
z9g=0, andzy=1

which follow from the definition of z; as the probability to win (i.e. reaching a fortune of N) starting with
a fortune of j. We find

N
0201+02, 1201+02<Z)

Problem 7 continued on next page. .. 13

Yiwei Yang Reinforcement Learning (Professor Ziyu Shao): Homework #5Problem 7 (continued)

()

and so we find Gambler’s ruin probabilities z,, = % pFq

Formula for bold play probabilities: We derive the basic equations for the bold play strategy. If your fortune
z is less than 1/2 then you bet z and ends up with fortune of 2z if you win and nothing if you loose. So by
conditioning we find

which gives

Q(2) = Q[W)pP(w) + Q(2[L) P(L) = pQ(22) + Q(0)q = pQ(22)

On the other hand if your fortune z exceeds 1/2 you will bet only 1 — z to reach 1. By conditioning you find

Q(z) = Q(W)pP(w) + Q(z|L)P(L) = Q(1)p+ Q(z — (1 = 2))g = p+ qQ(2z — 1)

In summary we have Bold play conditional probabilities IEQD }7 @1‘)L% J: éj \ § E/‘J : m* L\J\
Q) =pQs) i< 1) MEDASHLL g e 1
Q(z) =p+qQ(2z —1) if 2 > 1/2
Q) =0, Q1)=1

Problem 8]()

1. We can regard this situation as a sequential decision process in which we say that we are in state ¢ if
the ¢ th offer has just been presented and it is the best of the i offers already presented. Letting V()
denote the best we can do in this position, we find that V satisfies

V(i) = max[P(i), H(4)]

where P(i), the probability that the best offer will be realized if the i th is accepted, is given by
P(i) = P(offer is best of n| offer is best of first 7)
Yn i

C1/i on

and where H (i) represents the best we can do if we reject the ith offer. Hence we have
V(i) = max {Z,H(i)] L i=1,...,n
n

is now easy to see that H (%) is just the maximal probability of accepting the best offer when we have
rejected the first ¢ offers. But because the situation in which the first ¢ offers have been rejected is
clearly at least as good as that in which the first ¢ + 1 have been rejected (because the next one can
always be rejected), it follows that H(4) is decreasing in ¢ Because i/n increases and H (i) decreases in
1, it follows that for some

<H@) (<))

> H(i) (i>])

3|3 |

Hence, the optimal policy is of the following form: for some j j < n — 1, reject the first j offers and
then accept the first candidate offer to appear, where an offer is said to be a candidate if it is of higher
value than any of its predecessors.

Problem 8 continued on next page. .. 14

Yiwei Yang Reinforcement Learning (Professor Ziyu Shao): Homework #5Problem 8 (continued)

Letting P; (best) denote the probability of obtaining the best prize under such a strategy, we have
(conditioning on the prize that is accepted.

P;(best) = P;(best |i + j prize is accepted)P;(i + j accepted)
1

<.

Now
P;(best |i + j accepted) = P(best of n| best of i + j)
1+
n
Also, P;(i+ j accepted) = P(best of first j = best of first i +j — 1

i+ 7= best of first i +75)
= P(best of first j = best of first i + j — 1)
xP(i+ j = best of first i + j)

~ (=) ()

Hence,
‘n—j n—j 1
P;(best) = J —
n 1+j5—1
i=1
B] n—1 1
C ni—k
k=3

Q

Q

SO

Also, because

(3!

we see that the optimal policy is, for n large, approximately to let the fraction 1/e of all prizes go by
and then accept the first candidate. The probability that this procedure will result in the best prize is
roughly 1/e

Problem 9 &

1. The intuitive way can be the gittins indices, which works quite well.The idea behind Gittins indices
works as follows. Assume that we are playing a single slot machine, and that we have the choice of
continuing to play the slot machine or stopping and switching to a process that pays a reward r. If we
choose not to play, we receive r, and then find ourselves in the same state (since we did not collect any

Problem 9 continued on next page. .. 15

Yiwei Yang Reinforcement Learning (Professor Ziyu Shao): Homework #5Problem 9 (continued)

new information). If we choose to play, we earn a random amount W, plus we earn E {V (S”‘H, r) |S’”} ,
where S™*! represents our new state of knowledge resulting from our observed winnings. For reasons
that will become clear shortly, we write the value function as a function of the state S™*! and the
stopping reward r The value of being in state S™, then, can be written as

V (S™,r) =max [r +~V (S",7) , E{W" T 44V (S" r)|S"}]

The first choice represents the decision to receive the fixed reward r, while in the second choice we get
to observe W"*+1 (which is random when we make the decision). When we have to choose 2", we will
use the expected value of our return if we continue playing, which is computed using our current state
of knowledge. For example, in the Bayesian normal-normal model, E {W"'H\S"} = 0", which is our
estimate of the mean of W given what we know after the first n measurements.

If we choose to stop playing at iteration n, then S™ does not change, which means we earn r and face
the identical problem again for our next play. In this case, once we decide to stop playing, we will
never play again, and we will continue to receive r (discounted) from now on. For this reason, r is
called the retirement reward. The infinite horizon, discounted value of retirement is /(1 — 7). This
means that we can rewrite our optimality recursion as

r

V (8", r) = max ,
(5".7) -

E{W™H v ($7,r) S}

Here is where we encounter the magic of Gittins indices. We compute the value of r that makes us
indifferent between stopping and accepting the reward r (forever), versus continuing to play the slot
machine. That is, we wish to solve the equation

r

L=y

:E{Wn+1 +’7V (Sn+17r) ‘Sn}

for r. The Gittins index ¢ is the particular value of 7 that solves (6.3). This index depends on
the state S™. If we use a Bayesian perspective and assume normally distributed rewards, we would
use S™ = (6™, 5™) to capture our distribution of belief about the true mean p. If we use a frequentist
perspective, our state variable would consist of our estimate 8" of the mean, our estimate 62" of the
variance, and the number N of observations (this is equal to n if we only have one slot machine) If
we have multiple slot machines, we consider every machine separately, as if it were the only machine
in the problem. We would find the Gittins index IG*™ for every machine x. Gittins showed that, if
N — 0o, meaning that we are allowed to make infinitely many measurements, it is optimal to play the
slot machine with the highest value of IS ©" at every time n. Notice that we have not talked about
how exactly (6.3) can be solved. In fact, this is a major issue, but for now, assume that we have some

way of computing 15 7.

Recall that, in ranking and selection, it is possible to come up with trivial policies that are asymptot-
ically optimal as the number of measurements goes to infinity. For example, the policy that measures
every alternative in a round-robin fashion is optimal for ranking and selection: If we have infinitely
many chances to measure this policy will measure every alternative infinitely often, thus discovering
the true best alternative in the limit. However, in the multi-armed bandit setting, this simple policy
is likely to work extremely badly. It may discover the true best alternative in the limit, but it will do
poorly in the early iterations. If v < 1, the early iterations are more important than the later ones,
because they contribute more to our objective value. Thus, in the online problem, it can be more
important to pick good alternatives in the early iterations than to find the true best alternative. The
Gittins policy is the only policy with the ability to do this optimally.

2. Let us consider the beta-Bernoulli model for a single slot machine. Each play has a simple 0/1 outcome
(win or lose), and the probability of winning is p. We do know this probability exactly, so we assume

Problem 9 continued on next page. .. 16

Yiwei Yang Reinforcement Learning (Professor Ziyu Shao): Homework #5Problem 9 (continued)

that p follows a beta distribution with parameters a® and 5°. Recall that the beta-Bernoulli model is
conjugate, and the updating equations are given by

O/L—i—l — an + Wn+1
ﬁnJrl — 5n 4 (1 _ Wn+1)

where the distribution of W”*! is Bernoulli with success probability p. After n plays, the distribution
of p is beta with parameters o™ and ". The knowledge state for a single slot machine is simply S™ =
(a™, ™) . Consequently,
E (W"tS") =E [E (W™, p) |S™]
=E (p[S")
- am + ﬂn
Then, writing V (8™, r) as V (a™, 8", 1), we obtain

n n

[e%
an_i_ﬁn—’_/y
B
Oé”—i-ﬂ”

«
Oé"—l-ﬁ"

V(" B"+1,7)

E{Wn+1 +’}/V (Sn+177“) ‘Sn} _ V(an + 1;6",7’)

+7

For fixed o and 3, the quantity V (a, 3,7) is a constant. However, if the observation W"+! is a success,
we will transition to the knowledge state (a™ + 1, 5™); and if it is a fallure the next knowledge will be

(@™, " +1). Given S”, the conditional probability of success is —* = 5n
Ifwe let R() = V() and take oy 2 and 1 2 in, we have Ry (aq, 81) = a1+51 [14+~R (a1 + 1, b1, a2, B2)]+
a1+51 ['YR (alvﬁl + 1 , g, 62)] R2 (OZQ, 52) = a2ofﬁ2 [1 + ’YR (ala 517 (6] + 1 ﬁ?)]+a2+52 [’YR (alv B17a27 52 + 1)]

For the upper boundness, if we fix a value of r. If a 4 3 is very large, it is reasonable to suppose that

(B?) (Oé—f—lﬂ,) V(Oé,ﬁ—‘,—l’r)

Then, we can combine 2 equations to approximate the Gittins recursion as

V(a, 5,7) = max [+9V (e, B, 7)]

-
1—7x oz+ﬂ

In this case, it can be shown that the obove equation has the solution

Ve, B,r) = ﬁ max (r, aiﬂ)
ThUS, we have R(alvﬁla a27ﬁ2) = max {Rl (ala 51)) R2 (a27ﬁ2)}~

3. For it have to take n times loop and a larger effective time horizon with the larger of times. the
complexity is O(k * G(ﬁﬁ)) = O(k =). For approximation for speedup, we can make G(s,r) =
s 1
) 5 727) S S 7
/—Togry b (_STZOQ 7)), b is given byb(s) = { ¢—0-02645(log 5)*+0.89106 log s—0.4873 % < <100 This
V5(2log s — loglog s — log 16m)2, s > 100
approximation reduce the time of taking v times to evaluate GG, which only takes k times. The quality
of the approximation is quite well.

4. The technique to get the optimal solution is called Gittins Index Theorem plus dynamic programing.
This is a forward algorithm.

Problem 9 continued on next page. .. 17

Yiwei Yang Reinforcement Learning (Professor Ziyu Shao): Homework #5Problem 9 (continued)

The performance objective in the Bayesian Bernoulli MABP is to maximize the Expected Total Dis-
counted (ETD) number of successes after T observations, letting 0 < d < 1 be the discount factor.
Then, the corresponding bandit optimization problem is to find a discount-optimal policy such that

* () T T-1 K t Sk,0+Sk,t
Vb (XO) = maXren B [t=0 Zk:l d 8k,0+ fr,0+Sk,t+Fk ¢

~ K
“ag,¢[Xo = (Xk,0) g

T-1

-1 K
Z Z ak,tYk,t

t=0 k=1

p =Tmax{py} — E"

The regret is measured by . We now review the solution giving

for some (pk)i(zl
the optimal policy to optimization problem in the infinite-horizor setting by letting 7' = oco. In general,
as MABPs are a special class of MCPs, the traditional technique to address them is via a dynamic
programming (DP) approach. Thus, the solution to , according to Bellman’s principle of optimality
(Bellman, 1952), is such that for every ¢t = 0, 1,... the following DP equation holds:

* _ Sk,0FSk,t
VD (X1, Xk t) = maxy {Sk.0+fk,0+5k,f,+fk,t
Sk,01Sk,t LT
+d <5k,0+fk,,o+sk,,f,+fk,f, VD (xl’t’ Xkt ter... ’XK?t)
Jr,0+ et *
+Sk,0+fk,0+8k,t+fk,t ’ VD (Xl’t’ Xkt te... ’XK’t)

The optimality is ensured by the Gittins index theorem, we have the passive aciton aj ¢, ensure that

Py, (2},|7k, 0) = P { X141 = 23| Xie = 2p,ap, = 0}
= 1{xk/:xk}
for any zy, x), € X}, where 1y, _,,) is an indicator variable for the event that the state variable value

at time ¢t 4+ 1 : x4 equals the state variable value of state t : zy, and (4) the set of feasible polices II
contains all polices 7 such that for all

K
Zak,t <1
k=1

then there exists a real-valued index function G (), which recovers the optimal solution to such a
MABP when the objective function is defined under a ETD criterion, as in (2.3). Such a function is
defined as follows:

EXk,t::Ek-,t 22;01 R (Xk,t+i> 1) di
G (xk,t) = sup 1 4
T>1 EXk,t:$k,t Ei:O C (Xk7t+i’ 1) d
Such computational savings are particularly well illustrated in the Bayesian Bernoulli MABP where
the Gittins index (3.4) is given by

T—1 Sk,0+ Sk, t4i i

G _ € Zi:O Sk,0+fk,0+sk,t+i+Fk,t+id
k (Xk,t) = sup 1 ..
m>1 E-> o d

where E. = Ey, , = (88,0 + Sk,¢fr,0 + fr,¢) The Gittins index policy assigns a number to every treat-
ment. based on the values of s ; and fi; observed, and then prioritizes sampling the one with the
highest value. Thus, provided that we adjust for each treatment prior, the same table can be used for
making the allocation decision of all treatments in a trial.

18

': Jupyter Untitled Last Checkpoint: 2 hours ago (unsaved changes) ?

File Edit

In [59]:

In [6]:

+ 3 & B 4% MR B C W Markdown v

View Insert Cell Kemel Widgets Help

Homework5 for Reinforce-Learning S1-252

Yiwei Yang 2018533218

i. Environment setup

import os
import numpy as np

import matplotlib.pyplot as plt

import cv2

from typing import Generic, Union, Sequence, Tuple,Callable,TypeVar,Mapping, Any
from scipy import linalg

import math

import random

from tabulate import tabulate

from collections import defaultdict

from gym import Env, spaces

from gym.utils import seeding

from gym.envs.toy_text.discrete import categorical sample

ii. n-state simulation

class GridworldHDP:

up, right, down, Left
_direction_deltas = [
(-1, 8),
(e, 1),
1, @),
(e, -1),

“num_actions = len(_direction_deltas)

def _init_ (self,
reward_grid,
terminal_mask,

ne_action_probability):

self._reward_grid = reward grid
self. terminal mask - terminal mask
self. obstacle mask - obstacle mask
self. T - self._create_transition_matrix(
action_probabilities,
no_action_probability,
obstacle_mask

)

@property
def shape(self):
return self._reward_grid.shape

@property
def size(self):
return self._reward_grid.size

@property
def reward_grid(self):
return self._reward_grid

def run_value_iterations(self, discount-1.8,
iterations-1@)
utility grids, policy grids = self. init utility policy storage(iterations)

utility grid = np.zeros_like(self. reward_grid)

for i in range(iterations):
utility_grid - self._value_iteration(utility_grid-utility_grid)
policy grids[:, :, i] = self.best_policy(utility_grid)
urility_grids[:, :, i] - utility_grid

return policy_grids, utility_grids

def run_value iterations with_c(self, discount-1.e,
jterations=10,c=1):
utility grids, policy grids - self. init utility policy storage(iterations)

policy_grid = np.random.randint(2, self. num_actions,
self.shape)
utility_grid - self._reward_grid.copy(}

for 1 in range(iterations):
policy grid, utility grid - self. policy iteration(
policy grid-policy grid,
utility grid-utility grid

policy_grids[:, :, 1] = policy_grid
urility_grids[:, :, i] - urility_grid
return policy grids, utility grids

def generate_experience(self, current_state idx, action_idx):
sr, sc - self.grid_indices_to_ccordinates(current_state_idx)
next_state_probs = self. T[sr, sc, action_idx,].flatten()

next_state_idx - np.random.choice(np.arange(next_state_probs.size),
p-next_state_probs)

return (next_state_idx,
self. reward_grid.flatten()[next_state_idx],
self. terminal mask.flatten()[next_state idx])

def grid_indices_to_coordinates(self, indices=None):
if indices is None:
indices - np.arange(self.size)
return np.unravel_index(indices, self.shape)

def grid_coordinates_to_indices(self, coordinates-None):
Annoyingly, this doesn't work for negative indices.
The mode="wrap’ parameter only works on positive indices.
if coordinates is None:
return np.arange(self.size)
return np.ravel_multi_index(coordinates, self.shape)

def best_policy(self, utility grid):
M, N = self.shape
return np.argmax((utility grid.reshape((1, 1, 1, M, N)) * self. T)
.sum(axis=-1).sum(axis=-1), axis=2)

def _init_utility_policy_storage(self, depth):
H, N - self.shape
utility_grids = np.zeros((M, N, depth))
policy grids = np.zeros_like(utility grids)
return utility grids, policy_grids

def _create_transition_matrix(self,
action_probabilities,
no_action_probability,
obstacle_mask):
M, N = self.shape
T = np.zeros((M, N, self._num_actions, M, N))

r8, c@ - self.grid indices_to_coordinates()

T[re, ce, i, re, @] +- no_action_probability

Not Trusted

[Logout

| Python 3.6.10 64-bit (tf: conda) O

for action in range(self. num_actions):
for offset, P in action_probabilities:
direction = (action + offset) % self._num actions

dr, dc - self._direction_deltas[direction]
rl = np.clip(ré + dr, 8, M - 1
€1 = np.clip(ce + dc, 8, N - 1)

temp_mask - obstacle_mask[r1, c1].flatten()
ri[temp_mask] = ré[temp_mask]
ci[temp_mask] = c@[temp_mask]

T[re, ce, action, r1, c1] += P

terminal locs = np.uhere(self. terminal mask. flatten())[1
T[re[terminal locs], ce[terminal locs], :, :, :] =
return T

def _value_iteration(self, utility grid, discount-1.8):
out - np.zeros_like(utility_grid)
M, N - self.shape
for 1 in range(M):
for j in range(n):
out[i, j] - self._calculate_utility((i, j).
discount,
utility grid)
return out

def _policy_iteration(self, *, utility_grid,
policy_grid, discount-1.8):
r, € = self.grid_indices_to_coordinates()

M, N = self.shape

utility grid = (
self._reward_grid +
discount * ((utility_grid.reshape((1, 1, 1, M, N)) * self._T)
-sum(axis—-1).sum(axis=-1))[r, ¢, policy_grid.Flatten()]
.reshape(self. shape)

utility grid[self._terminal mask] - self._reward grid[self. terminal mask]
return self.best_policy(utility_grid), utility_grid

def _caleulate_utility(self, loc, discount, utility_grid):
if self. terminal mask[loc]:
return self. reward _grid[loc]
rou, col = loc
return np.max(
discount * np.sum(
np.sum(self._T[row, col, :,
axis--1),
axis=-1)
) + self._reward grid[loc]

1] * utility grid,

def plot_policy(self, utility grid, policy_grid=None):
if policy grid is None:
policy_grid = self.best_policy(utility grid)
markers = "~>v<”
marker_size - 260 // np.max(policy_grid.shape)
marker_edge_width - marker_size // 18
marker_fill color = "’

no_action mask = self. terminal mask | self. obstacle mask

utility_normalized - (utility_grid - utility_grid.min()) / \
(utility_grid.max() - utility_grid.min())

utility_normalized - (255*utility_normalized).astype(np.uints)

utility rgb = cv2.applyColorap(utility normalized, cv2.COLORMAP JET)
for i in range(3):

channel = utility rgb[:, :, i]

channel[self._obstacle mask] =

plt.imshow(utility_rgb[:, :, ::-1], interpolation-"none')
for i, marker in enumerate(markers):
Y. X = np.uhere((policy grid == 1) & np.logical not(no_action mask))
plt.plot(x, y, marker, ms-marker_size, mew-marker_edge width,
color=marker_fill_color)

y, x = np.uhere(self._terminal mask)
plt.plot(x, y, ‘o', ms-marker_size, mew-marker_edge_width,
color-marker_fill_color)

tick_step_options = np.array([1, 2, 5, 1@, 20, 58, 188])

tick_step - np.max(policy_grid.shape)/8

best_option = np.argmin(np.abs(np.log(tick step) - np.log(tick_step options)))
tick_step = tick_step_options[best_option]

plt.xticks(np.arange(e, policy_grid.shape[1] - .5, tick_step))
plt.yticks(np.arange(e, policy_grid.shape[e] - .5, tick_step))
plt.xlim([-@.5, policy_grid.shape[@]-6.5])

plt.xlim([-@.5, policy grid.shape[1]-8.5])

In [7]: def plot_convergence(utility_grids, policy grids):
fig, ax1 - plt.subplots()
ax2 = axi.tuinx()
utillty ssd - np.sun(np. square(np. dLFF(utility grids)), axls=(8, 1)
ax1.plot(utility_ssd, 'b.
ax1.set_ylabel(’Change in Utility’, color-"b')

policy_changes = np.count_nonzero(np. dif(policy grids), axis=(6, 1))

ax2.plot(policy changes, 'r.-')
ax2.set_ylabel("Change in Best Policy', color='r')

In [8]: shape = (3, 4)

obstacle = (1, 1)
start = (2, @)
default_reward = -0.1
goal reward =
trap_reward = -1
reward_grid = np.zeros(shape) + default_reward
reward_grid[goal] = goal_reward
reward_grid[trap] - trap_reward
reward_grid[obstacle] -
terminal mask = np.zeros_like(reward_grid, dtype=np.bool)
terminal_mask[goal] = True
terminal_mask[trap] = True
obstacle_mask = np.zeros_like(reward_grid, dtype=np.bool)
obstacle_mask[1, 1] = True
gu = GridNorldMDP(reward_grid-reward_grid,
obstacle_mask-obstacle_mask,
terminal_mask-terminal_mask,
action_probabilities=
(-1, e.1),
(8, ©.8),
(1, 0.1),

1
no_action_probability=e.8)
mdp_solvers - {'Value Iteration': gw.run_value_iterations,
*value Iteration with c': gw.run_value_iterations_with_c}
for solver_name, solver_fn in mdp_solvers.items():
print("Final result of {}:".format(solver_name))
policy_grids, utility grids - solver_fn(iterations-25, discount-8.5)
print(policy_grids[:, :, -1])
print(utility_grids[:, :, -1])
plt.figure()
gw.plot_policy(utility_grids[:, :, -1])
plot_convergence(utility_grids, policy_grids)
plt.shou()

Final result of Value Iteration:
M o1 1 a1

In [20]:

In [60]:

Lise an se ey
[0. 6. 8. 0.]
[o. 1. 8. 3.1]
[[©.56999141 ©.71861644 ©.83561644 1.]

[©.44499134 ©.66504787 ©.52854795 -1. 1
[©.30913886 ©.22232689 ©.34732113 ©.88656751]]

D
2
] 3

Change in Utility

1 2
200
175
10y
1008
o.?sg
0505
025

o 5 10

5 n

Final result of Value Iteration with c:

[[1. 1. 1. e.]
[e. 6. 8. 0.]
[0. 1. 8. 3.1]
[[©.56999142 ©.71861644 ©.83561644 1.]

[©.44499138 ©.66504787 ©.52854795 -1. 1
[©.30913898 ©.222321@1 ©.34732117 ©.8865676]]

175

150

125

100

075

Change in Utility

Change in Best Policy

050

025

. Student MRP & MDP

def get_all states(state_transition matrix: Mapping[S, Any]) -> Sequence[S]:
state_list - [state for state in state transition matrix.keys()]
return state_list

class MP(Generic[S]):
def _init (self, state transition matrix: SSf) -> None:

try:
valid: bool - self.check_if_valid(state_transition matrix)
if not valid:

raise ValueError()
except ValueError:

exit('Input is not a valid Markov Process')

self.all states: Sequence[S] = get_all states(state_transition matrix)
self.state transition matrix: SSf - state_transition matrix

def check if valid(self, state transition matrix: SSf) -> bool:

for s1 in state_transition_matrix:
if math.fsun(state_transition_matrix[s1].values())
return False
for s2 in state_transition_matrix[s1].keys():
if state_transition_matrix.get(sl).get(s2) < 8 or state_transition_matrix.get(sl).get(s2) » 1:
return False

return True

def get_stationary_distribution(self) -> Happing[s, float]:

len(self.all states)
np.zeros((sz, sz), dtype-float)
construct state transitien matrix as a 2-d np array
for i, s1 in enumerate(self.all states):
for j, s2 in enumerate(self.all states):
if self.state_transition matrix.get(s1) is not Nome:
if self.state_transition matrix[s1].get(s2) is not None:
P[i][§] = self.stat trix[s1][s2]
find a row vector v s.t. v * P 1 by solving an overdetermined L
ref: https://stephens999.github nuteStats/stationary_distribution. html
a = np.concatenate((np.transpose(P) - np.identity(sz), np.ones((1, sz))), axis-@)
b = np.concatenate((np.zeros((sz, 1)), np.ones((1, 1))), axis=e)
x = linalg.1stsq(a, b)[e]
return {s: x[i][®].astype(float) for i, s in enumerate(self.all states)}

inear equation

class DiscretelimitActionsEnv(Env):
def _init_ (self, ns, vA, P, isd):

self.p - P
self.isd - isd

self.lastaction - None # for rendering
self.ns = ns

self.vA = np.array(vA)

assert (self.uA >= 8).all(), "Number of actions per state must be nonnegative.”
self.observation_space = spaces.Discrete(self.ns)
self.action_space = spaces.Tuple(tuple(spaces.Discrete(nA) for nA in self.vA))

self.seed()
self.s - categorical sample(self.isd, self.np_random)

def seed(self, seed-None):

self.np_random, seed - seeding.np_random(seed)
return [seed]

def reset(self):

self.s - categorical_sample(self.isd, self.np_random)
self.lastaction = None
return self.s

def step(self, a):

if not self.action_space.spaces[self.s].contains(a):
raise ValueErrer(
#"Action must be < {self.action_space.spaces[self.s].n} in space {self.s}, attempted {a}"

transitions - self.P[self.s][a]
i - categorical sample([t[e] for t in transitions], self.np_random)
p, s, r, d= transitions[i]

self.lastaction - (self.s, a)

self.s - s

return (s, r, d, {"prob” : p})

class StudentEnv(DiscretelimitActionsEnv):
def _init_ (self):

states / observations
FACEBOOK
CLAsS1 -
cLass2 -
CLASS3 =
SLEEP = 4 # terminal state
observations = [FACEBOOK, CLASS1, CLASS2, CLASS3, SLEEP]

®

ns = len(ebservations)

initial state distribution (uniform)
isd - np.ones(ns) / ns

P is a dict of dict of Lists, where
P[sj[a] == [(probability, nextstate, reward, done),

P
for s in observatiens:
Pls] - {3

P[FACEBOOK][@] = [(1, FACEBOOK, -1, False)]
P[FACEBOOK][1] = [(1, CLASS1, @, False)]
P[CLASS1][@] = [(1, FACEBOOK, -1, False)]
PCLASS1][1] = [(1, CLASS2, -2, False)]
p[cLASS2][@] = [(1, SLEEP, 6, True)]
PCLASS2][1] = [(1, CLASS3, -2, False)]
p[cLAsS3][e] = [(e.2, CLASS1, 1, False),
(8.4, CLASS2, 1, False),
(8.4, CLASS3, 1, False)]
PCLASS3][1] = [(1, SLEEP, 18, True)]
P[SLEEP][@] = [(1, SLEEP, @, True)]

VA =
for s in observations:
vA.append(len(P[s1))

super().__init__(nS, vA, P, isd)

In [22]: class MRP(MP):
def _init_ (self, mrp_input: Union[SSTFf, STSFf], discount_factor: float) -> Nonme:
¥ TODO: inherit check_if valid from MP
self.type_indicator: bool = MRP.input_type(mrp_input)
self.gamma: float = discount_factor
self.terminal_states, self.non_terminal states - self._categorize_states(mrp_input)
self.state_transition_matrix, self.reward_matrix - self._assign_transition_matrix(
mrp_input)

self.reward_function: Rf
self.value function: Vf

self._assign reward function()
self. assign value function()

return True if SSTff, False if STSff

@staticmethod

def input_type(mrp_input: Union[SSTFf, STSFf]) -> bool:
first_value - mrp_input.get(next(iter(nrp_input)))
return type(first_value) is dict

def _categorize states(self, mrp_input: Union[SSTFf, STSFF]) -> Tuple[Sequence[S], Sequence[S]]:
List of all states
all_states - [state for state in mrp_input.keys()]
List of terminal states
terminal_states = []
non_terminal_states - []
for s in all_states:
if self.type_indicator is True:
if mrp_input.get(s).get(s) is not None and mrp_input.get(s).get(s)[6] =
terminal_states.append(s)
else
non_terminal_states.append(s)

else:
if mrp_input.get(s)[e].get(s, @)
terminal_states.append(s)
else:
non_terminal _states.append(s)
return terminal_states, non_terminal states

def _assign_transition matrix(self, mrp_input: Union[SSTFf, STSFf]) -> Tuple[SSf, SSfl:
Note that both state_transition_matrix ond reward matrix should only include non-terminal states
otherwise assume s is terminal state, P_ss - 1, which means (I - gamma * P) will have a @ eigenvalue
when gamma - 1, which makes the inversion method inapplicable
state_transition_matrix = {}
reward_matrix = {}
if self.type_indicator is True:
for si in self.non_terminal_states:
state_value = {}
reward_value = {}
for s2 in mrp_input.get(s1):
state_value.update({s2: mrp_input.get(s1).get(s2)[e]})
reward_value.update({s2: mrp_input.get(sl).get(s2}[1]})
state_transition_matrix.update({s1: state value})
reuard_matrix.update({s1: reward_value})
else:
for s1 in self.non_terminal_states:
state_transition_matrix.update({si: mrp_input.get(s1)[e]})
reuard_value - {}
for s2 in mrp_input:
reward_value.update({s2: mrp_input.get(s1)[1]})
reuard_matrix.update({si: reward value})
return state_transition_matrix, reward_matrix

def _assign_reuard_function(self) -> Rf:

reward_list = {}
for current_state in self.reward_matrix:

expected_reward - 8

for next_state in self.state_transition_matrix.get(current_state):

expected_reward += self.state transition_matrix.get(current_state).get(next_state, 0.8
) * self.reward matrix.get(
current_state) .get(next_state, 8.8)

renard_list.update({current_state: round(expected_reward, 5)})

return reward_list

def _assign_value_function(self) -» vf:
#V=R+gama*pP*V
convert R to np array
R = np.array([reuard for reward in self.reward function.values()])
print("R:", R)
print(“state list: ", self.non_terminal_states)
convert P to np array
sz - len(self.non_terminal_states)
P - np.empry([sz, sz])
for indexl in range(sz):
for index2 in range(sz):
Plindex1, index2] = self.state_transition matrix.get(self.non_terminal states[index1]).get(
self.non_terminal_states[
index2], @.8)
calculate value using matrix inversion
https://stackoverflow. com/questions/9155478/hou-to-try-except-an-il legal -matrix-operation-due-to-singularity-in-numpy

print("P: ", P)
print("A: ", np.eye(sz) - self.gamma * P)
try:

V = np.linalg.solve(np.eye(sz) - self.gamma * P, R)
except np.linalg.LinAlgError as err
if "Singular matrix’ in str(err):
print("matrix not invertible, will use least square, but most likely result may be incorrect™)
Vv - np.linalg.lstsq(np.eye(sz) - self.gamma * P, R, rcond-None)[e]
else:
raise
convert V from np array to dict
uf = {state: float(value) for state, value in zip(self.non_terminal_states, np.nditer(V))}
return vf

R(s)
def get_expected reward(self, state:) -» float:
return self.reward_function.get(state)

#r(s, s')

def get_state_transition_reward(self, current_state: S5, next_state: §) -» float:
return self.reward_matrix.get(current_state).get(next_state, ©.8)

v(s)

def get value(self, state: S) -> float:

return self.value function.get(state)

def get_random_sample(self, initial state: S = None) -> Tuple[Sequence[S], float]:

g -
sample - []
ts =0

state - initial state if initial state is not None else random.choice(self.non_terminal_states +
self.terminal_states)
while state in self.non_terminal states
sample.append(state)
g += self.gamma ** ts * self.get expected reward(state)
ts 4= 1
next_state_lst - [s for s in self.state_transition_matrix.get(state).keys()]
print(next_state_lst)
pr_list = [pr for pr in self.state_transition_matrix.get(state).values()]
print(pr_list)
state = np.randon.choice(next_state lst, p-pr list)
sample.append(state)
return sample, g

In [66]: def policy_eval(policy, env, discount_factor-1.6, theta=e.0@eel):

In [23]:

In [46]:

In [47]:

V - np.zeros(env.ns)
while True:
delta = 6
For each state, perform a "full backup”
for s in range(env.nS):
v=-8
Look at the possible next actions
for a, action_prob in enumerate(policy[s]):
For each action, Look at the possible next states
for prob, next_state, reward, done in env.P[s][a]
Calculate the expected value. Ref: Sutton book eq. 4.6.
v 4= action_prob * prob * (reward + discount_factor * V[next state])
How much our value function changed (across any states)
delta = max(delta, np.abs(v - V[s]))
V[s] = v
Stop evaluating once our value function change is belew a threshold
if delta < theta:
break
return np.array(V)
mapping from integer to state names
obs = {B: 'FACEBOOK', 1: 'CLASS1', 2: 'CLASS2", 3: 'CLASS3', 4: 'SLEEP'}
random_policy = dict()
for s, actions in actions_for_obs.items():
n_actions = len(actions)
random_policy[s] - np.ones(n_actions) / n_actions
equivalent to pi(a[s)=8.5 for all states except the terminal sleep state

allowed actions per state
actions_for_obs = {

B “facebook®, 1: 'quit'},
‘facebook', 1: 'study'},
‘sleep’, 1: 'study'},
‘pub”, 1: ‘study'},
‘sleep'}

env = StudentEnv()
value_fxn = policy_eval(random_policy, env)
def student_MDP_Policy():
for s, value in enumerate(value_fxn):
print(f"optimal state-value in state {obs[s]}: ", round(value,1))
def value_iteration(env, theta-6.eee1, discount_factor-1.8):
def one_step_lookahead(state, V):
A = np.zeros(env.vA[state])
for a in range(env.vA[state]):
for prob, next_state, reward, _ in env.P[state][al:
Afa] += prob * (reward + discount_factor * V[next_state])
return A

V - np.zeros(env.ns)

while True:
Stopping condition
delta - 8

Update each state. ..

for s in range(env.ns):
Do a one-step Lookahead to find the best action
A = one_step_lookahead(s, V)
best_action_value - np.max(A)
calculate delta across all states seen so far
delta = max(delta, np.abs(best action value - V[s]))
Update the value function. Ref: Sutton book eq. 4.18.
V[s] = best_action value

Check if we can stop

if delta < theta:
break

Create a deterministic policy using the optimal value function
policy = [np.zeros(na) for nA in env.va]
for s in range(env.ns):
One step Lookahead to find the best action for this state
A = one_step_lookahead(s, V)
best_action = np.argnax(A)
Always take the best action
policy[s][best_action] - 1.8
return policy, v
def student_MDP_Value():
optimal_policy, optimal value fxn = value iteration(env)
print(optimal_policy)
print(optimal_value fxn)

for s, actions in enumerate(optimal_policy):
print(f"In state {obs[s]}")
print(f"optinal state-value: ", optimal_value_fxn[s])
print(f"action for optimal policy: ", actions_for_obs[s][np.argmax(actions)], '\n")

s

Typevar('s’) # state

A = TypeVar('A') # action
SS = Mapping[S, Mapping[s, float]] # state tramsition

SSTFf - Mapping[S, Mapping[s, Tuple[float, float]]] # state tramsition + r(s,s') reward
STSFf

Mapping[s, Tuple[Mapping[s, float], float]] # state tramsition + R(s) reward
Mapping[union[s, Tuple[s, A]]. fleat] # reward function
Mapping[Tuple[S, A], float] # reward function
Mapping[S, float] # state value function
Mapping[Tuple[S, A], float] # action value function
= Mapping[S, A] # (deterministic) policy
Mapping[S, Mapping[A, float]] # policy
SASf = Mapping[Tuple[S, A, S], Mapping[S, float]] # state-action transition
SASTFf = Mapping[Tuple[S, Al, Mapping[S, Tuple[float, float]]] # state-action transition + r(s,a,s’) reward
SATSFf - Mapping[Tuple[S, A], Tuple[Mapping[s, float], float]] # state-action transition + R(s,a) reward

MRP

student_mrp = {
"Facebook : ({ Facebook': 8.9, 'Class 1': 8.1}, -1),
*Class 1': ({'Facebook': 8.5, "Class 2': 0.5}, -2),
*Class 2°: ({'Sleep’: 6.2, 'Class 3': 0.8}, -2),
*Class 3': ({'Pass’': 0.6, 'Pub’: @.4}, -2),
*Pass’: ({'sleep’: 1.6}, 1@),
*Pub’: ({'Class 1': 8.2, 'Class 2': 8.4, 'Class 3': 0.4}, 1),
"Sleep”: ({'Sleep’: 1.8}, @)

mrp_obj = MRP(student_mrp, 1.8)
print(mrp_obj.state_transition matrix)
print(mrp_obj.revard_matrix)

In [64]:

In [67]:

In [68]:

In [73]:

print(mrp_obj.reward_function)
print(mrp_obj.value function)

R [-1. -2. -2, -2. 1. 1.]
state list: ['Facebook’, 'Class 1°, 'Class 2', 'Class 3', 'Pass’, 'Pub’]
[[e.oe.1e. e. e. o.]
5. e.56. 8. 0.]
6. 8. ©.86. 8.]
6. 8. ©. 0.60.4]
6. 8. ©. 6. 8.]
e.20.40.40. o.]]
[[e1-e.1 & o 0. o.]
0.5 1. -6.5 8. @. #o.]
e. e. 1. -8.8 @. o.]
8. 8. 6. 1. -8.6-0.4]
e. 8. 6. 8. 1. 8.]
6. -6.2-6.4-8.4 . 1.1]]
Facebook': {'Facebook': 8.9, 'Class 1': 8.1}, 'Class 1': {'Facebook': 6.5, 'Class 2': 8.5}, 'Class 2': {'Sleep’: 8.2, 'Class
: 9.8}, 'Class 3': {'Pass’: ©.6, 'Pub’': 0.4}, 'Pass’': {'Sleep': 1.8}, 'Pub’': {'Class 1" *Class 2': @.4, 'Class 3': @.
4}
{"Facebook': {'Facebook’: -1, 'class 2': ‘class 3': -1, 'Pass’: -1, 'Pub’: -1, 'Sleep’: {'Fa
cebook”: -2, 'Class 1 , 'Class 2': -2, 'Class 3': -2, 'Pass’: -2, 'Pub’: -2, 'Sleep’: -2}, 'Class 2': {'Facebook': -2, 'Cla
‘Class 2°: -2, 'Class 3"t -2, "Pass’: -2, 'Pub’: -2, "Sleep’: -2}, 'Class 3': {'Facebook': -2, 'Class 1': -2, 'Class
Class 3': -2, 'Pass’: -2, "Pub’: -2, 'Sleep’: -2}, 'Pass’: { Facebook': 18, 'Class 1': 16, 'Class 2': 18, 'Class 3': 1
@, 'Pass’: 16, 'Pub’: 18, 'Sleep’': 18}, 'Pub’: {'Facebook': 1, 'Class 1': 1, 'Class 2': 1, 'Class 3': 1, 'Pass’: 1, 'Pub':
‘Sleep’: 1}}
{'Facebock’: -1.8, 'Class 1': -2.0, 'Class 2': -2.0, 'Class 3': -2.0, 'Pass': 10.8, 'Pub’: 1.0}
{'Facebook': -22.543200876543223, 'Class 1': -12.543200876543218, 'Class 2': 1.4567901234567303, 'Class 3': 4.320037654320086,
'Pass’: 10.8, 'Pub’: ©.8024691358024668)
MDP

student_MDP_Policy()

optimal state-value in state FACEBOOK: -2.3
optimal state-value in state CLASS1: -1.3
optimal state-value in state CLASS2: 2.7
optimal state-value in state CLASS3: 7.
optimal state-value in state SLEEP: ©.8

student_HDP_Value(
[array([6.,
[6. 6. 8.
In state FACEBOOK

optimal state-value:

1.1), array([e
16. 0.]

6.@

., 1.1), array([e., 1.1), array([@., 1.1), array([1.1)]

action for optimal policy: quit
In state CLASS1

optimal state-value: 6.8

action for optimal policy: study
In state CLASSZ

optimal state-value: 8.0

action for optimal policy: study
In state CLASS3

optimal state-value: 10.@
action for optimal policy: study
In state SLEEP

optimal state-value: .0

action for optimal policy: sleep

iv. 5x5 grid

class BaseGridworld:

def _init (self, width, height, start state-None, goal state-None, terminal states=[], blocked states=[]):

self.nidth = width
self.height - height
self.start_state - start_state
self.goal_state - goal_state
self.terminal_states = terminal_states
self.blocked states = blocked states
self.reset state()

def get_possible actions(self, state):

all_actions - [(e,1), (-1,@), (@,-1), (1,0)]
return all_actions
def get states(self):
return [(x,y) for x in range(self.uidth) for y in range(self.height}]
def get reward(self, state, action, next state):
raise NotImplementedError

def get_state_reward_transition(self, state, action):
perform action
next_state = np.array(state) + np.array(action)

clip to grid in case action resulted in off-the-grid state

next_state = self._clip_state_to_grid(next_state)

return to old state in case action resulted in moving to a blocked state

if self.is blocked(next_state): # State is blocked; check action selection.’
next_state = state

make into tuple of ints
next_state = int(next_state[8]), int(next state[1])

reward = self.get_reward(state, action, next_state)

return next_state, reward
def _clip state_to_grid(self, state):
X, y = state
return np.clip(x, @, self.uidth-1), np.clip(y, €, self.height-1)
def is goal(self, state):
return tuple(state) -- self.goal state
def is_terminal(self, state):
return tuple(state) in self.terminal_states
def is_blocked(self, state):
return tuple(state) in self.blocked states
def reset_state(self):
self.state - self.start_state
return self.state

action_to_nwse(action):
X, y = action

ret = '’

i :ret += 'n’
ioret += s’
1 oret += ‘e’

Doret += ‘w'

return ret

class Gridworld(BaseGridworld):
def get_renard(self, state, action, next_state):
if state -- next_state: # ie going off grid results
return -1
if self._is_special(state)[]:
return self._is_special(state)[1][1]
return @

return to the same state

def get_state_reward_transition(self, state, action):
if self._is_special(state)[8]:
return self._is_special(state)[1]

else:
return super().get_state_reward_transition(state, action)

if state == A:
return True, (A prime, 10)
if state == B:
return True, (B_prime, 5)
return False, (None, None)

class UniformPolicyAgent:
def _init (self, mdp, discount=8.9, eps-le-2, n_iterations=1808)
self.mdp = mdp
self.discount - discount

initialize values
self.values = np.zeros((self.mdp.uidth, self.mdp.height))
self.policy = {}

Iterative policy evaluation algorithm (Ch 4, p 59)
for 1 in range(n_iterations):
nen_values - np.zeros_like(self.values)

for state in self.mdp.get_states():
if state in self.mdp.terminal states:
continue

q_values = {}
for action in self.mdp.get_possible_actions(state):

uniform action probability

action_prob - 1/len(self.mdp.get_possible_actions(state))

compute q_value and update value estimate

q_values[action] = self.compute_q value(state, action)

new_values[state] += action prob * q_values[action] # Bellman equation (eq. 3.14)

if improvement less then eps (after at least 1 iteration), stop iteration
if np.sum(np.abs(new_values - self.values)) < eps:
break

update values with new_values for the next iteration Loop
self.values = new_values

record optimal policy
self.policy - self.update policy(}

def compute_q_value(self, state, action):
get next state and reward from the transition model
next_state, reward - self.mdp.get_state_reward_transition(state, action)
return reward + self.discount * self.values[next_state]

def update_policy(self)
policy = {}
for state in self.mdp.get states():
if state in self.mdp.terminal states:
continue
q_values - {}
for action in self.mdp.get_possible actions(state):
q_values[action] = self.compute_q value(state, action)
policy[state] = [a for a, v in g values.items() if round(v, 5) == round(max(q_values.values()), 5)]
return policy

class OptimalvalueAgent:
def _init_ (self, mdp, discount-8.9, eps-le-2, n_iterations-100@):
self.mdp = mdp

initialize values
self.values = np.zeros((self.mdp.width, self.mdp.height)) # eq 3.
self.policy = {}

Iterative policy evaluation algorithm (Ch 4, p 59)
for i in range(n_iterations):
new_values = np.zeros_like(self.values)

for state in self.mdp.get_states():
if terminal state, nothing to recurse down
if state in self.mdp.terminal_states:
continue

1f not terminal state, use Bellman eq to recurse value calculation
q values = {}
for action in self.mdp.get_possible actions(state):
uniform action probability
action_prob = 1/len(self.mdp.get_possible actions(state})
get next state and reward from the transition model
next_state, reward - self.mdp.get_state_reward_transition(state, action)
compute q_value and update value estimate
q_values[action] - reward + discount * self.values[next_state]

record optimal value
new_values[state] = max(q_values.values()) # Bellman optimality equation (eq. 3.19)

record optimal policy
self.policy[state] - [a for a, v in q_values.items() if v

max(q_values.values())]

if improvement Less then eps (after at Least 1 iteration), stop iteration
if np.sum(np.abs(new_values - self.values)) < eps:
break

update values with new values for the next iteration Loop
self.values = new_values

def fig_unif_randem():
mdp = Gridworld(width=s, height=5)
agent = UniformPolicyAgent(mdp)

print('fig unif_random: State-value function (V) for uniform random policy. (V = I action prob * q_value)')
print (tabulate(np.flipud(agent.values.T), tablefmt="grid’))

def fig optimal():
mdp = Gridworld(width=s, height=5)
agent - OptimalvalueAgent(mdp)

print('fig optimal: Optimal solutions to the gridworld example. (V = max (q_value))')
print(tabulate(np.flipud(agent.values.T), tablefnt='grid')) # transform coordinates so (8,8) is bottom Left

grid = [[*" for x in range(ndp.width)] for y in range(ndp.height)]
for (x,y), v in agent.policy.items():
grid[y][x] = [action_to_muse(v_i) for v_i in v]

invert vertical coordinate so (6,6) is bottom Left of the displayed grid
grid = grid[::-1]
print('optimal policy:')
print(tabulate(grid, tablefmt-'grid'))
In [71]: fig_unif random()

fig_unif_random: State-value function (V) for uniform random policy. (V = I action prob * q value)

SoESp e Ty

5.32599 1.49562

4.43144

| 3.31311

2.79335

8.558869 |

2.99631 | 2.25393 | 1.91118

1.52567

©.8548918 | 8.742147 | ©.6756931 | ©.361835 | -8.399509 |

-.431488 | -0.351013 | -0.581873 |
R

®
©
o
8
Il
@
&

| -1.85350 | -1.3412 | -1.22535 | -1.41913 | -1.97146 |
+ e

In [74]: fig_optimal(

ig_optimal: Optimal solutions to the gridworld example. (V = max (q_value))

¥ -
| 21.9747 | 24.4163 | 21.9747 | 19.4163 | 17.4747 |

+ ----- S

| 19.7754 | 21.e747 | 19.7754 | 17.7979 | 16.8181 |
Lo

| 17.7978 | 19.7754 | 17.7979 | 16.8181 | 14.4163 |

+ --t- -t -t ————t
| 16.0181 | 17.7079 | 16.0181 | 14.4163 | 12.6747 |
+ -t e
| 14.4163 | 16.8181 | 14.4163 | 12.9747
¥

11.6754 |

optimal polic
e

. + '
Loel) Frns], ol |
. :

v. Gambler

In [1e5]: gamble_capital - intuitive_capital - 1e@
horses = ('A', "B, 'C")
odds = (2, 3, 6
gamble bet - probabilities - (8.5, .25, 8.25)
intuitive bet - (6.5, 6.17, 8.33)
gamble_plot = []
intuitive_plot -

[1

for 1 in range(e, 1000):
Determine winner of horse race randomLy
rand_num = random.random()
winner =
cumulative - @
for index, probability in enumerate(probabilities):

cumulative += probability
if rand_num < cumulative:
uinner - index
break

Calculate capital after each race
gamble_capital *- gamble bet[winner] * odds[uinner]
intuitive_capital *- intuitive_bet[winner] * odds[winner]

Add point to the array for plotting of graph
gamble_plot.append(gamble_capital)
intuitive_plot.append(intuitive capital)

x = [i for i in range(1, 1061)]

plt.plot(x, gamble plot, label='gamble Betting')
plt.plot(x, intuitive plot, label='Bold Betting')
plt.xlabel('Races')

plt.ylabel('capital')

plt.title('Gambler Simulation')

plt.legend()
plt.show()

1e18 Gambler Simulation

—— gamble Betting
Bold Betting

Races

