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Abstract—Unreliable tests are a living nightmare for soft-
ware development and test engineers. Flaky tests, which repre-
sent tests that can non-deterministically pass or fail for the
same code version, become one of the major challenges on
large-scale projects, including Facebook, Mozilla, and so on.
Order-dependent(OD) tests are one of the widely-studied key
categories of flaky tests, which means different execution orders
result in different test results. Existing works mainly focus
on detecting the presence of such tests at the test case level,
so developers still need to find the order-dependent variables
themself, which is time-consuming and error-prone. In this
paper, we implement tainting using the Phosphor framework on
the Maven instrument plugin and then find out order dependent
variables among test cases by dynamic taint analysis(DTA). We
evaluate our approach on the International Dataset of Flaky
Tests(IDoFT) and achieve the accuracy that PR created can
achieve.

Index Terms—Taint analysis, Flaky test, Parallel Bugs

I. Introduction

Flaky tests are tests that can non-deterministically pass
or fail for the same code version. This can affect the
effectiveness of tests since developers cannot determine
whether the test is failing because of code bugs or due to
the flakiness of the test itself.

Many organizations have reported flaky tests as one
of the major challenges on large-scale projects, including
Facebook(Meta)[1], Mozilla[2] and so on.

As pointed out in prior studies[3], [4] test order depen-
dency is one common cause of flaky tests. In this kind of
test, because of some resources shared between the tests
(e.g, variables or shared files), different execution orders
will result in different test results (pass or fail). This kind
of flaky test is categorized as order-dependent(OD) tests
in previous work[5].

In this paper, we propose an approach to detect this
kind of flaky test, at the same time, report the order-
dependent variables that cause the test to be flaky to
help the developer debug the flaky test.

Existing works like iDFlakies[5] or FlakeScanner[6]
mainly focus on detecting the presence of flaky tests. For
example, iDFlakies will run the test suite multiple times,
each time permutes the order of tests. Then it will compare
the result of different runs. If the test has both success and
fail results and fails for at least two rounds, the test will be

marked flaky. These tools mainly focus on detecting order-
dependent flaky tests at the test case level, so developers
still need to find the order-dependent variables themself.

In summary, our contributions are as follows
• Implement tainting using Phosphor framework on

Maven instrument plugin;
• Use Dynamic Taint Analysis(DTA) to find out order

dependent variables among test cases.

II. Background
A. Dynamic Taint Anlysis

Dynamic taint analysis is used to track the flow of
information between sources and sinks. Any program value
relies on the data calculated from the tainted source is
considered tainted. Any other value is considered to be
untainted. The taint policy P determines exactly how
taint flows during program execution, which operations
introduce new taint, and what checks are performed on
tainted values. The specifics of the taint policy may vary
depending on the analysis application. for example, the
taint tracking policy for unlocking malware may differ
from that for attack detection. However, the basic concept
remains the same. It is natural to express dynamic taint
analysis in terms of the operational semantics of the lan-
guage, since it is performed on the code at runtime. Taint
policy behaviour, whether taint propagation, introduction
or checking, is added to the operational semantic rules.

B. Flaky tests
Flaky Tests are tests that sometimes fail and sometimes

succeed, while both the subject and the test conditions
remain the same. Thus, Flaky Tests are in fact unstable
tests, or tests that fail (or succeed) at random. Flaky
Tests are found in repetitive tests. Flaky Tests are more
a product of automated testing than manual testing,
and Flaky Tests have become a common and prominent
problem with the spread of automated testing. There are
many reasons why Flaky Tests arise, such as asynchronous
waiting, concurrency, remote services, test dependencies,
and so forth. The problem with flaky tests is that they
slow the CI/CD pipeline and erode confidence in testing
processes. To spot flaky tests, developers need to compare



test results from multiple test runs. This analysis would
be a time-consuming process to perform manually.

C. Order-dependent Tests
Test-order dependence results in order-dependent tests.

An order-dependent test is a flaky test whose pass/fail
outcome depends on the test order in which it runs. In
other words, there exists a test order where the order-
dependent test passes and another different test order
where the test fails. Prior work [7] showed that order-
dependent tests are among the top three most common
kinds of flaky tests. A widely reported example happens
when Java projects updated from Java 6 to Java 7. Java
7 changed the implementation of reflection, which JUnit
uses to determine the test order to run tests in. Many
tests fail due to the tests being run in a different test
order from before, requiring developers to manually fix
their test suites [8].

Shi et al. [9] categorized order dependent tests into 2
types: victim and brittle. Victim tests will pass when run
in isolation, but fail when other tests run before them
and pollute their states. Brittle tests will fail when run in
isolation, only pass when run with other tests that set its
states. We will also use this categorization.

III. Methodology
A. System Design

To detect order dependent variables, we will use dy-
namic taint analysis, which requires a taint source and a
taint sink. In our analysis, we define any heap write, e.g.
write to static variable or array element as source, any
heap read, e.g. read of static variable or array element as
sink.

Therefore, for the taint analysis part, our system will
do the following:

1) Instrument at any heap variable write, including
static and non-static ones, mark them as taint
sources.

2) Instrument at any heap variable read, including
static and non-static ones, check if they point to any
tainted data that is not in the same testcase. If they
point to other testcases, this is an order dependent
variable.

3) Collect order dependent data and generate a report

B. A motivating example
We use the following case as an example:

Listing 1: A prologue case
static class MutableHolder{
int x; int y;

}
public static MutableHolder tmp = new MutableHolder();
public void test1(){ //run first

tmp.x = 5;
}
public void test2(){ //run second

tmp.y = tmp.x;

asserEquals(tmp.y, 5);
}

As shown in List. 1, this is an order dependent test of
Brittle type. For assetion in test2() to pass, test1() must
run before test2(). In our instrumentation, we will taint
tmp.x when assigning the value, then when test2() runs,
tmp.y will be tainted with taint tag of tmp.x. Finally
when tmp.y is read in assertion, we will check its tag, and
find that it has a taint tag from other testcase (test1()),
which means test2() is a Brittle test and tmp.y is a order
dependent variable.

IV. Implementation
Our implementation is based on two important infras-

tructures, Phosphor and Bramble. Phosphor is used for
dynamic tainting, while Bramble is used to integrate with
Maven projects and instrument testcases.
A. Phosphor

Phosphor[10] is a system for performing dynamic taint
analysis in the JVM that simultaneously achieves goals
of performance, soundness, precision, and portability. It
achieves this goal by instrumenting byte code without
changing the JVM itself. Tracking is done by combination
of instrumented code, instrumented library (incluing JRE
libs) and Phosphor runtime.

To support easy tainting, Phosphor exports a set of
APIs in the MultiTainter class. To taint a variable, simply
replace the assigned value with MultiTainter.taintedX()
method call. To get taint tag of a variable, simply call
MultiTainter.getTaint().
B. Bramble

Bramble is a maven infrastructure to run tests while
performing dynamic taint tracking. It will act as a Maven
extension/plugin, which does the following things:

1) Compile the project using Maven without modifica-
tion

2) Before test phase, modifies the pom file to add
additional calls to first instrument testcases using
Phosphor, then run tests and ensure that the test-
case is instrumented.

3) Summarize the instrumented run result and provide
it to Maven’s surefire report.

C. Actual instrumentation
With the two infrastructure, we can start implementa-

tion. Our goal is to taint heap write and detect taint at
heap reads. As discussed in IV-A, we have simple APIs to
do this. However, instrumentation works at bytecode level,
so we need to translate the calls to byte code. Luckily,
Phosphor’s instrumentation is done using ASM[11] library,
which provides handy wrappers around common byte code
operations.

For example, if we taint the testcases in List. 1, the re-
sult would be List. 2, where createTag and checkTaintTag
are helper methods.
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Listing 2: Tainted case
static class MutableHolder{
int x; int y;

}
public static MutableHolder tmp = new MutableHolder();
public void test1(){ //run first

tmp.x = MultiTainter.taintedInt(5, createTag());
}
public void test2(){ //run second

tmp.y = tmp.x;
checkTaintTag(tmp.y);
asserEquals(tmp.y, 5);

}

To add function calls in bytecode, we make use of ASM’s
visitMethodInsn method, this will take care of inseting
appropriate function call instructions.

However, we have two issues to consider. One is to
properly support different types, including object and
primitive types. The other is to maintain the stack
between our inserted method calls.

1) Types: In Java, primitive types are not objects,
therefore we must deal with primitive types separately.
Luckily, Phosphor provides support for these, we just need
to call corresponding function for each primitive type.

As for objects, Phosphor provides a templated method
to taint objects. However, templated method will return
Object under the hood, so we have to add a cast (by using
the CHECKCAST opcode) to cast the value back to the
original type.

As for arrays, each array element will be tainted
separately, while the array itself will be treated as a normal
object. The rationale is that in Java arrays are subclass
of object, so we can safely do the cast.

2) Maintain stacks: The other issue is we need to
maintain stacks for our method calls. When tainting
objects, since we will return the tainted object, we have
already maintained the stack to be unchanged. However,
when we are checking taint tags, since it just takes an
argument and return void, we have to maintain the stack
through duplicates.

Our checking method has a signature of void
check(Object, Taint), while get taint tag method has
a signature of Taint get(Object). So to maintain stack
balance, it will undergo the following states:

value -> value,value -> value,taint -> taint,value ->
value,taint,value -> value,value,taint -> value

An example of doing this is shown in List. 3

Listing 3: Maintain stack for boolean
// v
super.visitInsn(Opcodes.DUP);
// v,v
GET_TAINT_BOOLEAN.delegateVisit(this);
// v,t
super.visitInsn(Opcodes.SWAP);
// t,v
super.visitInsn(Opcodes.DUP_X1);
// v,t,v
super.visitInsn(Opcodes.SWAP);
// v,v,t
CHECK_TAG_BOOLEAN.delegateVisit(this);

// v

However, this doesn’t work for long and double types,
as they take two slots on stack. So we need to define a
special swap routine for them, shown in List .4

Listing 4: Swap routine for long and double
public void swap(Type stackTop, Type belowTop) {

if (stackTop.getSize() == 1) {
if (belowTop.getSize() == 1) {

// Top = 1, below = 1
super.visitInsn(Opcodes.SWAP);

} else {
// Top = 1, below = 2
super.visitInsn(Opcodes.DUP_X2);
super.visitInsn(Opcodes.POP);

}
} else {

if (belowTop.getSize() == 1) {
// Top = 2, below = 1
super.visitInsn(Opcodes.DUP2_X1);

} else {
// Top = 2, below = 2
super.visitInsn(Opcodes.DUP2_X2);

}
super.visitInsn(Opcodes.POP2);

}
}

Using this new swap routine, we can now maintain the
stack for long and double types, as shown in List .5

Listing 5: Maintain stack for long
// l
super.visitInsn(Opcodes.DUP2);
// l , l
BrambleMethodRecord.GET_TAINT_LONG.delegateVisit(this);
// l ,t
swap(Type.INT_TYPE, Type.LONG_TYPE);
// t, l
super.visitInsn(Opcodes.DUP2_X1);
// l ,t, l
swap(Type.LONG_TYPE, Type.INT_TYPE);
// l , l ,t
BrambleMethodRecord.CHECK_TAG_LONG.delegateVisit(this);
// l

D. Checking taint
The actual checking process is pretty simple. We will

check whether the taint tag at the specified read belongs
to the same testcase. If not, it will be stored to a map
where key is reader and value is writer. After that, this
information will be formatted and provided to surefire
report.

V. Evaluation
In the following we describe the dataset and evaluation

metrics weuse for our experiments. We evaluated 460
current order-dependent flaky tests in 14 repos that exist
in the idoft data set. For 120 of the tests have its PR
for flaky test elimination, thus we can cross-validate our
result for which is the source writer that makes victim
pollution by the proposed modification to which variable.
Some of them intrinsically have bugs for tests on the tested
machine. The evaluation machine is cast on M1 Max with
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Mac OS 12.4 with java version 8.0.332-librca since it’s the
only successful version for JVM instrumentation on Mac.

The phosphor requires the test to be successfully run
and then out order-dependent flaky test output. So we
remove many of the unrelated test files. Since the order
dependency typically occurs within a file through the
random order of different tests. For those who specify
the order of running by @RandomOrder, Our tool will
evaluate which variable triggers the failure.

This chapter will discuss how we managed to compile
all the tests in OD flaky tests dataset, and how effective
the tool is.

A. Dataset
International Dataset of Flaky Tests(IDoFT) [5], [12]

is a dataset of current and fixed flaky tests in real-world
projects. The goal of IDoFT is to crowd-source such a
dataset and to compile a variety of information (e.g.,
failure rates, flakiness-introducing commits) about flaky
tests. This dataset is made possible by Wing Lam, Garvita
Allabadi, and the students from the Fall 2020 CS 527
class at the University of Illinois. In addition there are
many publications that have contributed to this dataset,
including [13], [14], [15], [16], [9].

IDoFT contains 314 projects, 3742 flaky tests, 1263
fixed flaky tests, 191 flaky tests where no fixes are needed,
and 2070 unfixed flaky tests. For each flaky test, IDoFT
provides detailed information including project URL, SHA
detected, module path, fully-qualified test name, category,
status, PR link, days to address PR, and notes. We believe
that the dataset of this size and widely used is sufficient
for future objective evaluation.

B. Steps to compile the tests
For All the maven tests, we just need to add the maven

project to the sub folder of our bramble tool. Make sure
the JUnit version of the project is stuck to 4.12. Moreover,
we have to add a bramble-maven-extension to the maven
project. We use -Dmaven.test.failure.ignore=true for not
passed tests.

The maven extension will hook the maven compile
process, first give a phosphor instrumentation output and
then Brittle-test output.

1) Pitfalls in the phosphor instrumentation:
a) NoSuchMethod: In jboot ShiroSupportTest, it

extends the JbootTestBase. Phosphor failed to instru-
ment the methods from the supper class and out-
put error ShiroSupportTest>JbootTestBase.startApp:-1-
>JbootTestBase.startApp$$PHOSPHORTAGGED:41 »
NoSuchMethod

b) Reject Struct : java.lang.SecurityException:
Rejected: edu. columbia. cs. psl. phosphor. struct.
TaintedReferenceWithObjTag

The tainted tag may trigger a java language security
exception

Name Revision Reported Overall Non-PR FN Rate
nifi 41ff6f07 24 37 1 35.14
cloud-slang 2b5914c 10 10 2 0%
jboot 4bffb4df 4 6 1 33.33%
jicofo 2cae36e 3 4 2 25%
light-4j fcded16 9 14 4 28.57%
openhtmltopdf 4a0612f 34 35 10 2.86%
elasticjob bdfcaff0 21 10 0 0%
spring-cloud-gcp 7ab8b2c 5 8 0 37.50%
spring-boot daa3d45 - 2 - 100%
spring-kubernetes 3351926 12 28 2 57.14%

Overall 13.7984%
We have 13.7984% rate of false negative rate while the Non-PR is
22.

c) ClassCastException: java .lang .ClassCastExcep-
tion: {[}Ljava .lang .Object; cannot be cast to edu
.columbia. cs. psl .phosphor .struct .LazyReferenceArray-
ObjTags

Some of the Objects cast to another self-defined class
can not be compatible with this tool because our taint on
one class and other classes are not identical and can not
cast the ObjTag.

C. Effectiveness of the Tool
Our tool can find the taint source with a good positive

rate, but the soundness and correctness.
1) Integration Test: We first run our integration test

to dry test the effectiveness of our tool. These test are
simple and one-directed.

a) ArrayFlakyTest: It first init static int array and
string array, and non-static ones. If the t1() runs prior
than t3(), the test run successfully and returns no brittles.
However, when we swap the order, it report writer vic-
tim static field: edu.gmu.swe.bramble.ArrayFlakyTest.a
<- [1234, 2345, 3456]

b) MutableFieldAssertionTest: Without the error
triggering, the tool already output the writer to the vitim
reader i1-7 that clearly marked flaky pollutor if the reader
triggers flaky test by iDFlakies[5].

c) BasicBrittleAssertionTest: It automatically
marked the reader and writer to the non-static variable i
and b. If we specified the order of assertion failure, it will
directly pointer to the pollutor that is definitely helpful
for the debugging.

D. Flaky Test Dataset
For the following graph, we mark the Reported as the

tests that reported as Order dependent by our test, the
false negative rate is marked whether the reported variable
is false negative compared to the PR. And Non-PR is
marked the variable not reported by the PR so that we
can use this source variable to debug the order dependent
variable.

VI. Related Work
A. Taint analysis

Taint analysis is quickly becoming a staple technique in
security analyses. It can be categorized into dynamic and
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static taint analysis, called DTA and STA, respectively.
DTA runs a program and observes which computations
are affected by predefined taint sources such as user input
[17]. Alternatively, STA, propagates taints based on an
overestimation of all possible program paths leading to the
detection of all possible taint flows with no false negatives
but some false positives due to infeasible paths [18].
Bell et al. [10] present Phosphor, the first portable
general-purpose dynamic taint tracking system for the
Java Virtual Machine (JVM) that simultaneously achieves
performance, soundness, precision, and portability.

B. Flaky test
Regression testing is a widely adopted practice in

modern software development. If a test does not behave
deterministically but passes and fails when run multiple
times without any changes to the code, the test is regarded
as flaky [19]. Flaky test detection is used in a variety of
applications. Romano et al. [20] analyze 235 flaky UI test
samples found in 62 projects from both web and Android
environments. They identify the common underlying root
causes of flakiness in the UI tests, the strategies used
to manifest the flaky behavior, and the fixing strategies
used to remedy flaky UI tests. Dong et al. [6] present an
approach and tool FlakeScanner for detecting flaky tests
through exploration of event orders. Their experiments
on the subject-suite FlakyAppRepo show FlakeScanner
detected 45 out of 52 known flaky tests as well as 245
previously unknown flaky tests among 1444 tests. In
addition to accuracy, some studies focus on improving the
speed of flaky test detection. Cordeiro et al. [21] present
SHAKER, an open-source tool for detecting flakiness in
time-constrained tests by adding noise in the execution
environment. SHAKER was able to discover more flaky
tests than ReRun, which is the most popular approach in
the industry, and in a faster way; besides, their approach
revealed tens of new flaky tests that went undetected by
ReRun even after 50 re-executions.

VII. Conclusion
Order-dependent flaky tests are reported as one of the

major challenges on large-scale projects. Existing works
like iDFlakies[5]mainly focus on detecting the presence of
flaky tests. These tools mainly focus on detecting order-
dependent flaky tests at the test case level, so developers
still need to find the order-dependent variables themself.
In this paper, we propose an approach to detect this
kind of flaky test, at the same time, report the order-
dependent variables that cause the test to be flaky to
help the developer debug the flaky test. In detail, we
implement tainting using Phosphor framework on Maven
instrument plugin and use Dynamic Taint Analysis(DTA)
to find out order dependent variables among test cases.
We evaluate our approach on International Dataset of
Flaky Tests(IDoFT) and achieve the accuracy that PR
created can achieve. The FN Rate of the tool is good so

that it can be widely run on other order dependent flaky
testset for programmer to debug their flaky tests. Also,
the investigated 22 variables in the flaky testset that have
not been observed by other programmer can better help
the community to make their bugs eliminated.
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