
MVVM: A WASI empowered remote process resuming light weight
virtual machine

Yiwei Yang
University of California, Santa Cruz

Santa Cruz, California
yyang363@ucsc.edu

Brian Zhao
University of California, Santa Cruz

Santa Cruz, California
bwzhao@ucsc.edu

ABSTRACT
Checkpoint/Restore In Userspace (CRIU) has emerged as a promi-
nent solution for live migration of Linux processes, offering a wide
range of applications such as load balancing, fault tolerance, and
resource management. However, the current implementation of
CRIU is limited to supporting migration within the same Linux
kernel version and architecture. This constraint substantially re-
stricts its applicability in increasingly diverse and heterogeneous
computing environments.

This thesis presents MVVM (Migratable Velocity Virtual Ma-
chine), a novel framework built upon WebAssembly System In-
terface (WASI) and WebAssembly (Wasm) that extends the capa-
bilities of CRIU-based migration to encompass different kernels
and architectures. MVVM leverages the platform-agnostic nature
of WebAssembly to facilitate process migration across heteroge-
neous environments. The underlying idea is to make any applica-
tions play around on any device.

The proposed MVVM framework introduces a translation layer
including code and memory, enabling seamless migration of pro-
cess state information between different kernels like iOS, Linux,
OSX, and architectures like X86, and Arm. It achieves this by con-
verting the process state into an intermediate WebAssembly rep-
resentation, which is then restored on the target system. Further-
more, MVVM integrates an optimized algorithm for incremental
checkpointing and restoring, which minimizes migration down-
time and reduces network overhead.

We evaluate the performance and effectiveness of MVVM by
conducting extensive experiments in diverse simulated computing
environments. Our results demonstrate that MVVM significantly
expands the applicability of CRIU-based migration while maintain-
ing acceptable performance overheads, paving the way for more
edge computing stuff.

1 INTRODUCTION
The topic of migration in the scenario of heterogeneous binary of-
floading and remote resuming becomes a big problem. Say you a
migrating the current process somewhere that hasmore power like
the newest and greatest chip or operating system that has a bet-
ter jitted or AoTed native library code. Compared with prior work
CRIU, we support heterogeneous ISA, heterogeneous kernel.

Seamless migration in the context of heterogeneous device of-
floading and remote resuming poses several challenges. Some of
the key challenges include:

Heterogeneous ISA (Instruction Set Architecture):Migrating pro-
cesses across different instruction sets requires careful handling, as
the target architecture may have different instruction encodings,
register configurations, and memory layouts. One solution to this

problem is to employ WAMR’s dynamic code JIT+memory JIT IR
over webassembly techniques to convert the source code or inter-
mediate representation to the target ISA.

Heterogeneous Kernel: Different operating system kernels may
have different system call interfaces, internal data structures, and
resource management policies. Wasi supports the system call in a
musl manner that supports most of the underlying modern operat-
ing systems.

Different versions of native libraries:Themigration processmay
involve moving from an environment with one version of a native
library to another environment with a different version. In some
cases, this can lead to incompatibilities or performance issues.

State synchronization and Performance tradeoffs: During the
migration process, maintaining input or process consistency be-
tween the source and target environments is crucial. We have a
selection for maintaining an input restart or process state restart
whenever which part is faster. We target the LLVM Memory JIT
state.

Security and privacy: Migrating processes across different envi-
ronments can expose sensitive data and potentially introduce new
security vulnerabilities. To address these concerns, data encryp-
tion and secure communication channels like TLS can be employed
during the migration process to protect sensitive information.

In summary, usingWasm+Wasi to do seamless migration in het-
erogeneous environments is a complex problem that requires ad-
dressing various challenges. Solutions such as re-JIT, compatibility
layers, containerization, state synchronization, and security mech-
anisms can help ensure a successful migration process.

2 BACKGROUND
WebAssembly (Wasm) is a binary instruction format designed as
a low-level virtual machine that runs code at near-native speed. It
is a platform-independent format initially created to enable high-
performance applications in web browsers. However, its potential
extends beyond the browser, allowing for its use in other environ-
ments, such as IoT devices, edge computing, and server-side ap-
plications. Wasm supports a variety of higher-level programming
languages, including C, C++, Rust, and more.

WebAssembly System Interface (WASI) is a standardized system
interface for WebAssembly modules. WASI aims to provide a con-
sistent and secure API for Wasm applications to access system re-
sources, such as file systems, network sockets, and system clocks.
By defining a standardized interface, WASI allows Wasm modules
to be portable across different platforms and operating systems.



Conference’17, July 2017, Washington, DC, USA Yiwei Yang and Brian Zhao

Figure 1: The running model in WAMR

3 DESIGNS
We build our PoCs on the wasm-micro-runtime(WAMR) project,
available at https://github.com/Multi-V-VM/wasm-micro-runtime/tree/main,
is an open-source WebAssembly (Wasm) runtime specifically de-
signed for resource-constrained environments, such as IoT devices,
edge computing, and embedded systems.This lightweight runtime
enables developers to run WebAssembly applications efficiently
and securely on various platforms with limited resources. The run-
ning model can be illustrated as below:

In the wasm-micro-runtime (WAMR) project, there are differ-
ent build configurations to enable various features and execution
modes.The following options are related to theWebAssembly (Wasm)
execution modes:

(1) WASM_ENABLE_JIT: Just-In-Time (JIT) compilation is an
execution mode where Wasm bytecode is compiled into na-
tive machine code at runtime using LLVM_JIT, right before
execution. This approach allows for faster execution since
the code is compiled and optimized specifically for the tar-
get system. However, it increasesmemory usage and startup
time due to the compilation process. Enabling this option in-
cludes the JIT compiler in the WAMR build.

(2) WASM_ENABLE_AOT: Ahead-Of-Time (AOT) compilation
is an execution mode where Wasm bytecode is compiled
into native machine code before runtime, typically during
the build process or when the application is installed. This
approach results in faster startup time and improved run-
time performance since the code has already been compiled
and optimized. However, the compiled code may be larger
and less portable across different systems. Enabling this op-
tion includes the AOT compiler in the WAMR build.

(3) WASM_ENABLE_FAST_JIT: Fast Just-In-Time (Fast JIT) com-
pilation is a lighter version of the JIT compilation mode
based onASMJIT though thememory is applying LLVM_JIT.

Each of these execution modes has its advantages and trade-offs,
depending on factors such as startup time, runtime performance,
memory usage, and code portability. Depending on the specific re-
quirements of the target environment and application, we choose
to operate on LLVM_JIT.

3.1 Heaps and stacks to migrate
WAMR uses two primary stacks: the native stack and the Wasm
stack. The native stack is used for the execution of native code, in-
cluding the WAMR runtime itself and native functions. The Wasm
stack is used for the execution of WebAssembly code, including
local variables and operand stack.

Figure 2: The stack illustration in WAMR

Figure 3: The heap illustration in WAMR

In addition to the stacks,WAMR also uses heapmemory to store
the linear memory of a Wasm module instance, which is used for
global variables, dynamic memory allocations, and more.

3.2 Code Modification
(1) WASMApp: A basic counter application written in C, which

sleeps for one second and prints the counter value. To stream-
line the implementation initially, the program will call a na-
tive symbol (e.g., void __checkpoint(bool stop)) at a prede-
fined iteration, such as the fifth one.

(2) WASM runtime: A simplified version of iwasmwith the added
__checkpoint native symbol.

(3) The streamlined iwasm version will support new command-
line arguments, such as –restore or –restore-from-file, al-
lowing iwasm to restore a module from its serialized state.

(4) Note that this proof-of-concept intentionally avoids any ex-
ternal calls other than __checkpoint.



MVVM: A WASI empowered remote process resuming light weight virtual machine Conference’17, July 2017, Washington, DC, USA

4 PROPOSED EVALUATION
We will build three types of applications over Wasi and see the
migration functionality and performance. We choose 3 kinds of
applications: OLAP, inference and Graph Processing.

Figure 4: An example topology

5 RELATEDWORK
We describe the two lines of this work from which Drywall takes
inspiration:

The following points were discussed:
(1) [2] and [3] webassembly runtime explores an innovative ap-

proach to running a PHP/FAAS development server entirely
within a web browser using WebAssembly (Wasm). This ap-
proach utilizes Wasm and WASI (WebAssembly System In-
terface) to create an environment where PHP/FAAS can be
executed directly in the browser, eliminating the need for a
separate server or backend infrastructure.

(2) [1] Checkpoint/Restore In Userspace (CRIU) is an open-source
software project that enables the freezing and snapshotting
of running processes on a Linux system and restoring them
later on the same or another machine. This functionality
is particularly useful for scenarios such as live migration,
process-level fault tolerance, load balancing, and software
debugging.

REFERENCES
[1] L. Foundation. Criu. URL https://github.com/checkpoint-restore/criu.
[2] S. Shillaker and P. Pietzuch. Faasm: Lightweight isolation for efficient stateful

serverless computing. arXiv preprint arXiv:2002.09344, 2020.
[3] VMWare. Php runtime on webassembly. URL https://wasmlabs.dev/articles/php-

dev-server-on-wasm/.

https://github.com/checkpoint-restore/criu
https://wasmlabs.dev/articles/php-dev-server-on-wasm/
https://wasmlabs.dev/articles/php-dev-server-on-wasm/

	Abstract
	1 Introduction
	2 Background
	3 Designs
	3.1 Heaps and stacks to migrate
	3.2 Code Modification

	4 Proposed Evaluation
	5 Related Work
	References

