
CXLMemUring: A Hardware Software Co-design
Paradigm for Asynchronous and Flexible Parallel CXL

Memory Pool Access
Yiwei Yang

Abstract
CXL has been the emerging technology for expanding mem-

ory for both the host CPU and device accelerators with

load/store interface. Extending memory coherency to the

PCIe root complex makes the codesign more flexible in that

you can access the memory with coherency using your near-

device computability. Since the capacity demand with toler-

able latency and bandwidth is growing, we need to come up

with a new hardware-software codesign way to offload the

synthesized memory operations to the CXL endpoint, CXL

switch or near CXL root complex cores like Intel DSA to

fetch data; the CPU or accelerators can calculate other stuff

in the backend. On CXL done loading, the data will be put

into L1 if capacity fits, and the in-core ROB will be notified

by mailbox and resume the calculation on the previous hard-

ware context. Since the distance(timing window) of the load

instruction sequence is unknown, a profiling-guided way

of codegening and adaptively updating offloaded code will

be required for a long-running job. We propose to evaluate

CXLMemUring the modified BOOMv3 with added in-core-

logic and CXL endpoint access simulation using CHI, and

we will add a weaker RISCV Core near endpoint for code

offloading, and the codegening will be based on program

analysis with traditional profiling guided way.

ACM Reference Format:
Yiwei Yang. 2023. CXLMemUring: A Hardware Software Co-design

Paradigm for Asynchronous and Flexible Parallel CXLMemory Pool

Access. In Proceedings of ACM Conference (Conference’17). ACM,

NewYork, NY, USA, 3 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 Introduction
We live in the Great MemoryWall era. Resolving the memory

wall is useful for either HPC applications, DLRM, or LLM

training, either loading memory from the CPU or fetching

and swapping the tensor data from the GPU to the memory

pool[7]. How to resolve the latency and bandwidth, given

the current circumstances, is a top priority for applications

to scale without residual replicas. The traditional solution

for hiding the latency of memory like ROB, MSHR, read-

ahead cache, stack elimination, or TLB doesn’t expand to the

CXL.mem memory pool.

The CXL brings in the possibility of co-designing the appli-

cation yourself with coherency support compared to other

private standards like NVLink. Also, the current hack of

leveraging the PCIe P2P snapshotting the data[8] and loading

from it still wouldn’t be ideal for expanding your swapping

of VRAM. The underlying law for that may be the memory

roofline [2, 3]; the memory requests from the certain accel-

erator be classified after a single trial. Where the memory

bound is hit in the memory roofline is where to optimize

the memory bandwidth bound by prefetching or asynchro-

nous access. The prefetch approaches have been explored in

RDMA like AIFM[9], Leap[1] or MIRA[12].

Now that the MLIR way of analyzing the memory side

Very Long Instruction Word is well established[6], more and

more companies who care about the memory wall greatly

will apply VLIW based on MLIR. Asynchronous way of

accessing data by itself mapping to certain programming

paradigms like coroutine[5] or MPI all to all gather[4, 11].

Concerns are those paradigms are too narrow for the entire

codebase of C++ that wants to offload memory to remote.

2 Implementation
We devide the stack into software and hardware part, where

software is a JIT compiler that does analyses of the offload-

ing window dynamically because the access pattern is not

statically computable, and hardware is an async loading en-

gine inside the CPU where on getting the data notifies the

CPU to resume the previous context and a coprocessor near

endpoint that computes the load instruction sequence and

simple memory operations. On calling back to async loading

engine, it’s a CXL.io request with a mailbox inside the core.

The in-core logic can also be implemented in GPU EMC for

getting other DSA or CPU data.

Software Stack. We propose a binary JIT way of seam-

lessly executing the binary like Apple Rosseta, and the of-

floading of the load instructions of the program, as described

in MIRA[12] will be adaptively reapplied to the remote. We

will apply the forward analysis first to translate all the re-

motable memory accesses and pointer accesses to CXL byte

addressable way of access in MLIR. We name this MemUring

because this async way of accessing data is just like IOUring.

Then we use the backward analysis to get all the functions

with remote pointer passed, and may be rewritten with a

native local pointer. All the functions and labels will be la-

beled as profiling guided points for marking the cost model

penalty for the timing window. On running, the JIT can mod-

ify the code after labels have been called once to reach a

better timing window.

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn


Conference’17, July 2017, Washington, DC, USA Yiwei Yang

Hardware Stack. In the above graph, the red part is where
we modify the hardware. We propose the evaluation based

on BOOMv3 over FPGA since it’s an easy-to-modify core,

which can be manifest in the NoC or GPU accelerator with

the difference of in-core-logic being put in CPU’s cores but in

GPU’s External Memory Controller(EMC). We will add CHI

for simulating access to CXL Switches and other accelerators.

We also mark the CXL Switch as a possible offloaded point

with a different cost model. We think in the future codesign,

the CPU is only a hub for combining the DSA’s requests and

do OLAP that CPU excels at, and for the hardware design, we

only need a Co-processor near the endpoint for calculating

the memory requests, the endpoint can be either CXL Flash

for memory expander, GPU or CXL Switch.

For in-core logic, we decided to make all the memory

returns into L1 so that it’s unique to this SMT core and will

be instantly consumed as calculated by the software part;

we try not to use interrupts but only set the ROB metadata

to activate the requests.

3 Proposed Evaluation
We think we can use the evaluation to answer these ques-

tions.

Effectiveness of capturing window size. We want to

know how effectively the window of instructions has been

offloaded and how much other information can be done first

before the memory is loaded.

Relationship of integratingwithROB,MSHR. Wewant

to know how we should design this to integrate with ROB

and MSHR.

Additional On-chip Size Comparison. We want to ex-

plore whether this can save chip size or not.

Guiding the programming model. We want to know

how to make the programming model better because we

think in the future, offloading control flow but pin the most

memory in their local and only communicate little memory.

4 Related Work
Data Streaming Accelerator. It’s definitely possible to

put the things in the backend, apply the MLIR JIT to put all

loading operations remotely, and let the remote endpoint to

request DSA send back the device memory to LLC. However,

the DSA is currently only designed for single root CPU and

bulk memory load. The way of communicating from host

to DSA takes driver code and auxiliary data transmission,

which is tedious compared with designing the load engine

inside the core.

AsynchronousRDMA/SmartNICway of accessing data.
Mira[12] proposed the far memory operations offloading par-

adigm using profiling guided program syntheses with online

modification of the offloaded code. Directly putting their im-

plementation to CXL is not working since the granularity of

accessing data of CXL is 64Byte while RDMA is 4KB, which

is way bigger than a C++ object size that most workloads use.

Their approach of RDMA works extremely well in the bulk

memory load scenario, but not possible to get good results

for pointer chasing and indirect memory reading. A way of

rethinking those two scenarios in the world of CXL is our

thoughts.

"In-order-core" AsynchronousMemoryUnit. Compared

with putting both the loading core and offloaded code in-

side the cores like [10]. Their evaluation part only uses

the in-order core with object scratchpad inserted in L2 and

doesn’t talk about the relationship of L2 contention, ROB,

and MSHR.

References
[1] Hasan Al Maruf and Mosharaf Chowdhury. Effectively prefetching

remotememorywith leap. In 2020 USENIXAnnual Technical Conference
(USENIX ATC 20), pages 843–857, 2020.

[2] Nan Ding, Pieter Maris, Hai Ah Nam, Taylor Groves, Muaaz Gul Awan,

LeAnn Lindsey, Christopher Daley, Oguz Selvitopi, Leonid Oliker, and

Nicholas Wright. Evaluating the potential of disaggregated memory

systems for hpc applications. arXiv preprint arXiv:2306.04014, 2023.
[3] Yehonatan Fridman, Suprasad Mutalik Desai, Navneet Singh, Thomas

Willhalm, and Gal Oren. Cxl memory as persistent memory for disag-

gregated hpc: A practical approach. arXiv preprint arXiv:2308.10714,
2023.

[4] Dhabaleswar K (DK) Panda Gilad Shainer and Nick

Sarkauskas. Accelerating scientific applications in hpc clus-

ters with nvidia dpus using the mvapich2-dpu mpi library.

https://developer.nvidia.com/blog/accelerating-scientific-apps-in-

hpc-clusters-with-dpus-using-mvapich2-dpu-mpi/.

[5] Yongjun He, Jiacheng Lu, and Tianzheng Wang. Corobase:

coroutine-oriented main-memory database engine. arXiv preprint
arXiv:2010.15981, 2020.

[6] Paras Jain, Xiangxi Mo, Ajay Jain, Alexey Tumanov, Joseph E Gonzalez,

and Ion Stoica. The ooo vliw jit compiler for gpu inference. arXiv
preprint arXiv:1901.10008, 2019.

[7] Zhuohan Li, Lianmin Zheng, Yinmin Zhong, Vincent Liu, Ying Sheng,

Xin Jin, Yanping Huang, Zhifeng Chen, Hao Zhang, Joseph E Gonzalez,

et al. Alpaserve: Statistical multiplexing with model parallelism for

deep learning serving. arXiv preprint arXiv:2302.11665, 2023.
[8] Zaid Qureshi, Vikram SharmaMailthody, Isaac Gelado, SeungwonMin,

AmnaMasood, Jeongmin Park, Jinjun Xiong, CJ Newburn, Dmitri Vain-

brand, I-Hsin Chung, et al. Gpu-initiated on-demand high-throughput

storage access in the bam system architecture. In Proceedings of the
28th ACM International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, Volume 2, pages 325–339,
2023.

[9] Zhenyuan Ruan, Malte Schwarzkopf, Marcos K Aguilera, and Adam

Belay. {AIFM}:{High-Performance},{Application-Integrated} far

2

https://developer.nvidia.com/blog/accelerating-scientific-apps-in-hpc-clusters-with-dpus-using-mvapich2-dpu-mpi/
https://developer.nvidia.com/blog/accelerating-scientific-apps-in-hpc-clusters-with-dpus-using-mvapich2-dpu-mpi/


CXLMemUring: A Hardware Software Co-design Paradigm for Asynchronous and Flexible Parallel CXL Memory Pool AccessConference’17, July 2017, Washington, DC, USA

memory. In 14th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 20), pages 315–332, 2020.

[10] Luming Wang, Xu Zhang, Tianyue Lu, and Mingyu Chen. Asynchro-

nousmemory access unit for general purpose processors. BenchCouncil
Transactions on Benchmarks, Standards and Evaluations, 2(2):100061,
2022.

[11] Shibo Wang, Jinliang Wei, Amit Sabne, Andy Davis, Berkin Ilbeyi,

Blake Hechtman, Dehao Chen, Karthik Srinivasa Murthy, Marcello

Maggioni, Qiao Zhang, et al. Overlap communication with dependent

computation via decomposition in large deep learning models. In

Proceedings of the 28th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume 1,
pages 93–106, 2022.

[12] Guo Zhiyuan and Yiying ZhangHe, Zijian.Mira: Towards a Transparent
and Efficient Far Memory System. PhD thesis, UC San Diego, 2023.

3


	Abstract
	1 Introduction
	2 Implementation
	3 Proposed Evaluation
	4 Related Work
	References

