
CSE290X Final Report: Drywall: Reinforce the CXL malicious state
from kernel and TDX applications

Yiwei Yang
University of California, Santa Cruz

Santa Cruz, California
yyang363@ucsc.edu

Yangyu Chen
Chongqing University
Chongqing, China
cyyself@cqu.edu.cn

ABSTRACT
The workloads of Meta’s Metaverse, along with other in-memory
databases, indicate a high demand for memory capacity with ac-
ceptable memory bandwidth and latency. Tomeet this demand, the
emergingCXL device standard offers a new type of byte-addressable
remotememorywith variousmemory types and hierarchies, which
is well-suited for the demand. Additionally, the CXL3.0 device al-
lows for multi-nodes’ access to multi-memory expanders seman-
tics, expanding the span set to a large shared memory pool beyond
the capabilities of current operating systems. However, there are
security concerns with the CXL protocol, where cacheline exclu-
siveness in the Linux kernel or programs running inside the en-
clave may be vulnerable to physical attack bugs within the CXL
protocol. To address these concerns, this project proposes testing
for vulnerabilities within the Linux kernel baremetal and TDX pro-
gram, and reinforcing the IOMMUmechanism to prevent data leak-
age and system crashes.

1 INTRODUCTION
The topic of timing side-channel attacks and physical shutdown
of a CXL device to attack the kernel location is intriguing because
there are alreadymany attacks on PCIe devices, such as timing side-
channel attacks based on timing differences and kernel fuzzingmit-
igation in user-mode, and thunderbolt-attached devices that can
kill kernel space processes. Other protection measures like PCIe
DMA cache line level firewall protection can filter DMA requests
through PCIe to prevent attackers from making malicious moves.
A hardware-software codesign methodology on RISC-Vmicrocode
can mask data that is not accessed by the attacker’s side channel
physical attack. However, if we accidentally take the CXL.cache
devices offline while they are in possession of the cache line, it
could be risky if a malicious cacheline is received from a dead or
maliciously built device while the cache line is in the kernel. To
mitigate this risk, sensitive data in the kernel or devices behind
the TDX should be moved every time the Type 1 device takes an
exclusive cacheline. Additionally, if the program behind the TDX
is a verified database, we may need to give deferred verified re-
sults for all CXL endpoints, which involves moving the previous
memory node computability to the CXL controller. DMA is also
not trusted since it’s on-demand without leaking information, so
we can utilize the computational power in the CXL controller to
achieve similar protection. You can see the code in linux, Drywall
and qemu-image

CPU

Crypto Accelerator Vector Accelerator NN Accelerator

TEE support

CXL

Memory

Memory

Figure 1: CXL topology

1.1 CXL Basics

Extending CXL to outer devices divides the solution into 3 parts,
CXL.io meaning the original PCIe operations, CXL.cache mean-
ing the outer devices can manage the cacheline inside the CPU
and even share the device DRAM as LLC, this provides great com-
putability of where the device defined when and how the data is
used, all the CXL attached devices will aware of all the cacheline
changes assured by the protocol, CXL.mem meaning the CPU can
access through the serial bus through PCIe and issue ld/st instruc-
tion to devices. and same as memory, the CXL managed memory
can cache some of the memory windows that next time access if
the data in the window is not dirty, there’s no need for extra inter-
action with the CXL root complex.

Type 1 devices can utilize CXL.io or CXL.cache to control the
control plane of PCIe devices, and use CXL.cache to issue data
plane operations. One such unique device is a crypto accelerator
that shares some cachelines with the program in the CPU. Type
2 devices offer all three functionalities, and a unique example is a
GPU. Type 3 devices provide CXL.mem and CXL.io functionality,
meaning they are essentially memory devices.

2 BACKGROUND
The recent CXL technology brings up an excellent opportunity for
accelerators and memory disaggregations. In the past, we make ev-
erything in the SoC like Apple, AMD Zen, orQualcomm.They put
the accelerator inside the core so that all are connected to the in-
ternal memory bus. The coherency information is shared across
the devices and TEE support inside the memory controller can

https://github.com/SlugLab/linux
https://github.com/SlugLab/Drywall
https://drive.google.com/file/d/1Nt5KRgj8olwqSVCjO7rQxoFEkVuX1bK-/view?usp=sharing


Conference’17, July 2017, Washington, DC, USA Yiwei Yang and Yangyu Chen

SoC

Crypto Accelerator

Vector Accelerator

NN Accelerator

TEE support

Memory

Figure 2: SoC topology

make sure all the access to these accelerators is safe. Since SoCs
are packaged together, the main bus connected together is hard to
be broken. Even though, we have a great number of vulnerabilities
described in ⁇.

However, with the chip design’s limit comprehensively consid-
ering the die size physical limit, memory bandwidth limit, and heat
dissipation, Apple and other companies’ve been stuck with the cur-
rent num of cores and accelerators. Intel leads the CXL protocol
that gives every outer device ability to define the CPU’s cacheline.
We can plug memory and maintain a TEE support for other type3
devices’ memory expander with PCIe serial lane. This kind of de-
sign helps a variety of accelerators(type 1 devices) share the cache-
line coherency. Here introduce a lot of problems of whether taking
exclusive-able. For now, we can simply utilize the bit of ATS ex-
tended by CXL specification[5] for mitigating the bug, but in the
long run, we consider putting an eBPF co-processor near slower
CXL devices to co-design the memory access and support full se-
curity of the main bus.

3 THREAT MODEL
(1) Lower ability caused by the device hot-plug or stop func-

tioning by hardware or software bugs
(a) ThePCIE(CXL.io) has no persistent effectwhen the device

is not safely removed.
(b) For the CXL.cache device, if some cache line being modi-

fied state resides in this device, and the cache line cannot
be safely recovered from the dead device, which causes
data loss and even kernel panic or system shutdown.

(2) Lower security caused by new types of side channels.[10]
(3) Although thememory bus is enhanced for futuremulti-processor

systems, sync between each device will have much more
memory access latency compared to Today’s CPU hierar-
chy.

(a) For example, a shared queue or a memory region is used
to reduce operations.

We think the exclusive cache bugs extension to the outer devices
is lethal to the kernel state, but the assumption we are proposing
is too strong, that we need buggy CXL Type1 devices, and the sen-
sitive data will be offloaded to this device and if for 3a, we require
the NIC to be SRIOV(a shared queue inside the NIC to make multi
VMs share) and has bugs. We here just want to implement a type
1 crypto device in the kernel and the threat model is the mal state
or unplugging of the crypto accelerator will not hurt the runtime
of the file system that relies on the accelerator, we will mitigate
it by labeling every cacheline request with ATS to know it’s taken

CXL Type 1
Crypto Accelerator

DM-crypto

blk virtual layers
 

LVM1

LVM2

Figure 3: LUKS topology

exclusiveness-able and will transfer the calculation to kernel’s soft-
ware implementation if we detect the accelerator is in mal state or
unplugged.

4 PROPOSED DESIGN
4.1 A CXL Type 1 device simulator in the qemu
We first need to simulate the type 1 crypto accelerator in the qemu.
Wewill reuse the code of dm-crypt[6] and add a subpage[8] snooper
for all the access to the qemu managed devices’ cacheline and add
CXL transportation over that we can put our ATS on. This is a
hardware-software co-designmethod that in the runtime, the crypto
algorithm needs to tell which part of the cacheline is taken exclu-
sively so that the device can access the cacheline, next time you
write to the cacheline you need cache another replica data in the
Private DRAM of the cacheline state, if the device is unplugged,
we fall back to the software implementation of the crypto that is
in the slower path can recover and resume from the state the device
previously stored in the private DRAM.

5 PROPOSED EVALUATION
Our proposed evaluation will be first implemented on the QEMU
for PoC and then for future submission to the conference and wait
until the physical devices are comingwewill implement real-world
recovery resolutions.

5.1 LUKS
The LUKS[4] is a key setup for one specified storage device, and
every access to the device will use the key stored in the TPM to
encrypt and decrypt, the crypto calculation middle state may hurt
the data safety.

5.2 QEMU implementation
Initially, we implement the basic type-1 CXL.cache operations for
naive CXL devices. After examining the current mechanismwithin
the qemu and kernel, we will construct a state that may adversely
impact the IO stack if we offload the LUKS crypto part to the crypto
accelerator. To mitigate this issue, we will employ a hardware-
software co-design approach to prevent sensitive state crashes.



CSE290X Final Report: Drywall: Reinforce the CXL malicious state from kernel and TDX applicationsConference’17, July 2017, Washington, DC, USA

Our design will involve attacking the original un-modified CXL
devices to identify any additional vulnerabilities that the CXL.cache
may introduce. We will then propose our ATS (Address Transla-
tion Services) bit mitigation and a perfect solution to fall back to a
slower path when the CXL device is in a malicious state.

5.3 Implantation of type-1 CXL.cache device in
the qemu

EPT-Based Sub-Page writes Protection (SPP) provides Virtual Ma-
chine Monitor (VMM) with the ability to specify write permissions
for guest physical memory at a sub-page granularity of 128 bytes.
With SPP, the hardware enforceswrite-access checks for sub-pages
within a protected 4KB page, providing fine-grained memory pro-
tection for use cases such as memory guard and VM introspection.

To activate SPP, the ”sub-page write protection” bit (bit 23) must
be set to 1 in Secondary VM-Execution Controls. The feature is
backed by a Sub-Page Permission Table (SPPT), with the subpage
permission vector stored in the leaf entry of the SPPT. The root
page is referenced via a Sub-Page Permission Table Pointer (SPPTP)
in VMCS.

To enable SPP for guest memory, the guest page must first be
mapped to a 4KB EPT (Extended Page Table) entry. Once mapped,
the SPP bit (bit 61) of the corresponding entry must be set. Dur-
ing EPT walks, the hardware traverses the SPPT with the guest’s
physical address to look up the sub-page permission vector within
the SPPT leaf entry. If the corresponding bit is set, writing to the
sub-page is permitted. Otherwise, an SPP-induced EPT violation is
generated.

In summary, SPP provides fine-grained memory protection for
virtual machines, enabling VMM to specify write permissions for
guest physical memory at a sub-page granularity.This feature is ac-
tivated by setting the ”sub-page write protection” bit in Secondary
VM-Execution Controls and backed by a Sub-Page Permission Ta-
ble. Once activated, SPP allows hardware to enforce write-access
checks for sub-pages within a protected 4KB page, providing en-
hanced security for memory guard and VM introspection use cases.

5.4 Cache coherency emulation
1 struct D2HDataReq = {
2 D2H DataHeader 24b;
3 opcode 4b;
4 CXL.cache Channel Crediting;
5 }
6 struct CXLCache = {
7 64Byte Data;
8 MESI 4 bit;
9 ATS 64 bit;

10 [D2HDataReq;n] remaining bit;
11 }

With Intel SPP write protection support for metadata, access to
arbitrary cachelines can be marked with SPP. Transaction descrip-
tions and queuing can be performed in the 64-byte residue data in
the SPP, with the arbitrary operation based on the queue casting
an effect on MESI bit change, update writes protection for the Sub
Page and Root Complex, or other side effects like switch changes.

Requests from the host and device are not scheduled in a First-In-
First-Out (FIFO) manner. Instead, the host’s data will have a better
priority for D2H FIFO, and H2D requests will be consumed first.
All operations follow the interface operation to CXLCache.

To enable taking exclusiveness-able, we mark the Transporta-
tion ATS bit to indicate whether exclusiveness can be taken. We
then copy the cacheline to another map, and once emulated un-
plugged, the cacheline is copied back for further operation of the
kernel to resume software crypto calculation. Regarding the emu-
lation of eviction, we have two proposals. The first involves using
qemu pebs to watch the cache evict of the physical address of an
SPP. The second proposal is to use sub-page pin page_get_fast
to pin to a physical address within the last-level cache.

5.5 Emulate Error
TheCxlUncorErrorType (Enum) specifies the type of uncorrectable
CXL error to inject. These errors are reported through an AER (Ad-
vanced Error Reporting) uncorrectable internal error, with addi-
tional information logged at the CXL device. We use this to inject
runtime errors and reproduce the bugs that happen in the driver.
After injecting the error during every stage of interacting with the
cxl virtio crypto accelerator, we’ve been able to debug and fuzz the
driver bugs.

6 REAL DEVICE IMPLEMENTATION
Our plan involves fully implementing an eBPF co-processor near
CXL devices to address profiling and security concerns. By filtering
all cacheline requests at the CXL bus level, we can improve request
filtering to prevent kernel vulnerability.

6.1 Preliminary Idea for verified DB CXL
memory expander over TDX

When it comes to verifying data in distributed systems, one ap-
proach is to use a merkle tree to store data and hash values. The
concerto[1] algorithm takes verified steps on a single tree, which
makes it an efficient solution for verifying data in a distributed en-
vironment. However, the concerto algorithm may not be suitable
for verifying data on remote devices since it assumes a centralized
system.

To overcome this limitation, [7] proposed a new approachwhere
the verified process is distributed using RDMA (RemoteDirectMem-
ory Access). With RDMA, the remote devices’ enclave can be lever-
aged to implement the verified process in a distributed manner. In
this approach, a Merkle hash table is still used, but the verified pro-
cess is offloaded onto the device on the eBPF (extended Berkeley
Packet Filter) processor. The local enclave is then used to enlarge
the verified memory by 1TB TDX (Total Memory Encryption) per
key.

The use of eBPF co-processors situated near CXL devices can
be leveraged for implementing this approach in real devices. The
server algorithm can be placed on the server, and the client algo-
rithm can be placed on each eBPF processor. This allows for an
efficient implementation of the verified process on distributed sys-
tems, ensuring data integrity and security.

One advantage of this approach is that it can ensure the secu-
rity of data in transit. Since the verified process is distributed using



Conference’17, July 2017, Washington, DC, USA Yiwei Yang and Yangyu Chen

RDMA, it allows for secure data transfer between devices. Addi-
tionally, the use of TDX can prevent data from being compromised
in the event of a physical attack.

Overall, the proposed approach offers a more efficient and se-
cure way of verifying data in distributed systems. By offloading the
verified process onto the eBPF processor and leveraging the local
enclave, the approach ensures that data is verified in a distributed
manner, allowing for secure data transfer between devices.

7 RELATEDWORK
We describe the two lines of this work from which Drywall takes
inspiration:

The following points were discussed:
(1) Recent research by [9] revealed that a user-space driver is-

sue can trigger kernel space shuts, and the author designed
fuzzing techniques for real-world PCIe devices’ malicious
patterns to better identify kernel bugs.They found that SoC-
attached devices with IOMMU have some malicious state.
Another study uses a PCIe firewall to protect every DMA ac-
cess to PCIe devices, with the hook filtering DMA controller
traffic. Side-channel attacks pose a significant vulnerability
to current cloud FPGAs [3], which could worsen if every-
thing is extended with cache coherence manner [10]. More-
over, the ioctl inside the Linux kernel for PCIe-attached de-
vices such as FPGAs has a timing difference for side-channel
attack evaluation.

(2) [1, 2, 7] introduced Concerto, a verified key-value store that
sends verified memory access from the enclave to the un-
trusted host, which stores a Merkle hash tree. They also ap-
ply deferred verification that verifies integrity after a mil-
lion instructions were executed on the tree operation.

REFERENCES
[1] A. Arasu, K. Eguro, R. Kaushik, D. Kossmann, P. Meng, V. Pandey, and R. Ra-

mamurthy. Concerto: A high concurrency key-value store with integrity. In
Proceedings of the 2017 ACM International Conference on Management of Data,
pages 251–266, 2017.

[2] A. Arasu, B. Chandramouli, J. Gehrke, E. Ghosh, D. Kossmann, J. Protzenko,
R. Ramamurthy, T. Ramananandro, A. Rastogi, S. Setty, et al. Fastver: making
data integrity a commodity. In Proceedings of the 2021 International Conference
on Management of Data, pages 89–101, 2021.

[3] I. Giechaskiel, S. Tian, and J. Szefer. Cross-vm covert-and side-channel attacks
in cloud fpgas. ACM Transactions on Reconfigurable Technology and Systems, 16
(1):1–29, 2022.

[4] R. Hat. Configuring luks: Linux unified key setup. URL https://www.redhat.
com/sysadmin/disk-encryption-luks.

[5] Intel. Cxl specification, 2022.
[6] A. Linux. Qemu qmp website. URL https://wiki.archlinux.org/title/dm-crypt.
[7] I. Messadi, S. Neumann, N.Weichbrodt, L. Almstedt,M.Mahhouk, and R. Kapitza.

Precursor: A fast, client-centric and trusted key-value store using rdma and intel
sgx. In Proceedings of the 22nd International Middleware Conference, pages 1–13,
2021.

[8] Y. Ozawa and T. Shinagawa. Exploiting sub-page write protection for vm live mi-
gration. In 2021 IEEE 14th International Conference on Cloud Computing (CLOUD),
pages 484–490. IEEE, 2021.

[9] S. Qin, F. Hu, B. Zhao, T. Yin, and C. Zhang. Kextfuzz: Macos iommu firewall
inspection fuzzing. USENIX Security 23, 16(1):1–29, 2022.

[10] F. Yao, M. Doroslovacki, and G. Venkataramani. Are coherence protocol states
vulnerable to information leakage? In 2018 IEEE International Symposium on
High Performance Computer Architecture (HPCA), pages 168–179. IEEE, 2018.

https://www.redhat.com/sysadmin/disk-encryption-luks
https://www.redhat.com/sysadmin/disk-encryption-luks
https://wiki.archlinux.org/title/dm-crypt

	Abstract
	1 Introduction
	1.1 CXL Basics

	2 Background
	3 Threat Model
	4 Proposed Design
	4.1 A CXL Type 1 device simulator in the qemu

	5 Proposed Evaluation
	5.1 LUKS
	5.2 QEMU implementation
	5.3 Implantation of type-1 CXL.cache device in the qemu
	5.4 Cache coherency emulation
	5.5 Emulate Error

	6 Real Device implementation
	6.1 Preliminary Idea for verified DB CXL memory expander over TDX

	7 Related Work
	References

