学习是一种广泛的获取知识的过程,如果是为了高考或者是大学的期末考试的学习,其目的还是让学生掌握老师想让学生掌握的部分,是本专业所必需的基础理论和基本技能,但是老师并不负责知识的有效性和时效性.没了外力约束的学习,即一个人不需要获得GPA而获得荣誉或者去更好的地方学习,本科毕业的最低要求是各个课程及格,从而使得大量的废物产生在世界上.高等教育的学习,在我看来是在获得基本的求生技能的基础上培养一个人独立思考的能力,需要从社会的进步浪潮中发掘自己的擅长,如何与世界的进步发展同进步.就计算机专业而言,实践是获得此种能力的最好方式,培养实践能力比学习理论知识重要,因为工科的学习一切都有例外,没有办法用一个思辨的角度来发掘别的公司或者独立开发者为什么这么写,容易陷入过于苛求完美的循环中.工科的学习是循序渐进的,实践能力会随着眼界的拓宽而日益增长,直到自己也能造火车的那一天.PhD阶段的学习是从科研中来到科研中去的,我们无需关注无关自己课题的一切知识,其只能阻碍自己的钻研时间,而拓宽视野的过程应该流于与其他研究者的讨论,实践比赛或复现别人的artifacts,参与工作的实习,而不是单纯的从书本上寻找自己课题的答案.对于未来想要做的课题,可以提前参阅书籍和工业界的best practice,在潜意识中思考工业界没有想到过的部分,体现自己的价值.从学习到科研的转变,是一个人的学习热情从外驱力到内驱力,我认为什么东西工业界没有想到,或者没有提供全工业界的价值,而流于一些头部公司的东西,怎么更好的服务工业界.
从与已经失去科研兴趣的人交流过后,他们大多都在无尽的尝试中失去寻找自己可以作为PhD可以提供的价值,而放弃了探索,将PhD作为一种逃避经济衰退的手段,而苟活于柴米油盐,骗funding谋生.即便他们来自四大,即便他们认为这个世界已经被那些有规模效应的公司所占据了.什么是学术界的探索?究竞是所谓的peer review规则带来的劣币驱逐良币,还是PhD及其导师所想到的可以变革工业界思考的良币驱逐劣币?spark是一个很好的例子,Matai调研Facebook使用Hadoop却烦于其过慢的OLAP性能,即在伯克利创造了In memory Hadoop.我惊叹于伯克利的大力出奇迹,在peer review下并没有任何novelty却能在三次拒稿后用Facebook的广泛应用拿到了最佳paper.需求和解决方案是驱动计算机科学进步的源泉,没有思考的idea,如果它work,真正的peer也会告诉你,I buy it.伯克利不是一个适合做科研的地方,sky computing、alpa、foundation model、ORAM、UCB哪一个不是已经有别人的paper的基础上,封装一个伯克利defined layer,重新实现一遍,然后鼓吹这个东西made in UC Berkeley?但是这是一种创新吗?是.因为这就是共产主义.所谓的老人,告诉你一个怎么走捷径进入四大,top20,但是他们难道就能发SOSP吗,还是他们就是劣币,一个听从老板的left over的idea,让你实现,从而发顶会 ?PhD的位置是可以guide工业界行为的工作,这种美好的探索性的阶段绝不能浪费.
什么东西guide我的日常科研进度,我觉得老板只是提供方向上和日常怎么填满生活的建议,从而达到能发出paper的目标,真正的决定权在我,我希望在武力攻台之前拿到eb1a绿卡,我希望在毕业的时候能拿800k的工作.在做到这个之前,我理解工业界的需求是什么,我期望在他们着眼于此之前就提供我能提供的建议,同时获得价值.OpenAI说这是AI的黄金时代,David Patterson说这是体系结构的黄金时代,Chris Lattner说这是编译器的黄金时代,我说这是软硬件协同设计的黄金时代!